[1] A. Al-Shomrani, O. Arif, A. Shawky, S. Hanif and M.Q. Shahbaz. Topp leone family
of distributions: Some properties and application, Pakistan Journal ofStatistics and
Operation Research. 12(3):443-451, 2016.
[2] A.K. Gupta and S. Nadarajah . Handbook of Beta Distribution and its Applications.
New York: Marcel Dekker Inc, 2004.
[3] A.P. Prudnikov, Y.A. Brychkov and O.I. Marichev. Integrals and Series. Vol. 3. New
York: Gordon and Breach Science Publishers, 1986.
[4] A.Z. Keller and A.R.R. Kanath. Alternative reliability models for mechanical systems.
Third Int. Conf. Reliab. Maintainabil. Toulse, France, pp. 411415, 1982.
[5] C. Lee, F. Famoye and O. Olumolade. Beta-Weibull distribution: some properties and
applications to censored data. Journal of modern applied statistical methods. 6(1):17,
2007.
[6] E. L. Lehmann. The power of rank tests. Annals of Mathematical Statistics. 24:23-43,
1953.
[7] G.M. Cordeiro, E.M.M. Ortega and D.C.C. da Cunha. The exponentiated generalized
class of distributions. J. of Data Science 11:127, 2013.
[8] G.R. Aryal, E.M. Ortega, G. Hamedani, and H.M. Yousof. The Topp-Leone Gen-
erated Weibull Distribution: Regression Model, Characterizations and Applications.
International Journal of Statistics and Probability. 6:126, 2016.
[9] L.G. Pinho, G.M. Cordeiro and J.S. Nobre. The Harris extended exponential distri-
bution. Communications in Statistics- Theory and methods. 44:3486-3502, 2015.
[10] M.A.W. Mahmoud, K.S. Sultan and S.M. Amer. Order statistics from InverseWeibull
distribution and characterizations. textMETRON-Int. J. Statist. LXI.(3):389-401,
2003.
REFERENCES 1018
[11] M. Aleem and G.R. Pasha. Ratio, product and single moments of order statistics
form Inverse Weibull distribution. J. Statist. 10(1):708, 2003.
[12] M. Aleem. Product, ratio and single moments of lower record values of inverseweibull
distribution. J. Statist. 12(1):23-29, 2005.
[13] M.Q. Shahbaz, S. Saman and N.S. Butt. The Kumaraswamy Inverse Weibull Distri-
bution. PJSOR. Vol. 3:479-489, 2012.
[14] M.V. Aarset. How to identify bathtub hazard rate. IEEE Transactions Reliability.
36:106-108, 1087.
[15] N.L. Johnson and S. Kotz. Continuous Univariate Distributions. Vol. 1. New York:
John Wiley and Sons, 1970.
[16] R. Calabria and G. Pulcini. On the maximum likelihood and least-squares estimation
in the Inverse Weibull distributions. Statist. Appl. 2(1):53-66, 1990.
[17] R. Calabria and G. Pulcini. Bayes 2-sample prediction for the Inverse Weibull distri-
bution. Commun. Statist. Theor. Meth. 23(6):1811-1824, 1994.
[18] R.D. Gupta and D. Kundu. Generalized exponential distribution. Aust. N.Z.J. Stat.
41:173-183, 1999.
[19] R.D. Gupta and D. Kundu. Generalized exponential distribution: dierent methods
of estimations. j. Stat. Comput. Sim. 69:315-338, 2001.
[20] R. da Silva, A. Thiago, D. Maciel, R. Campos, and G. Cordeiro. A new lifetime
model: the gamma extended Frechet distribution. Journal of Statistical Theory and
Applications. 12:39-54, 2013.
[21] S. Hanook, M.Q. Shahbaz, M. Mohsin and B.M.G. Kibria. A Note On Beta Inverse
Weibull distribution. Comm.Statict.Theor.Meth. 42:320-335, 2013.
[22] S. Nadarajah and S. Kotz. The beta exponential distribution Reliability engineering
& system safety, Elsevier. 91:689-697, 2006.
[23] W. Nelson. Applied Life Data Analysis New York. John Wiley and Sons New York.
1982.
Thank you for copying data from http://www.arastirmax.com