You are here

Protoporfîrinle Fotosensitize Edilmiş Eritrositlerdeki Hemoliz Mekanizmasına Sıcaklığın Etkisi Ve Eritrosit/ Protoporfirin/ İnsan Serum Albümini Sisteminin Incelenmesi

The Effect of Temperature on Photosensitization of Erythrocyte Hemolysis by Protoporphyrin and Evaluation of Erythrocyte/ Protoporphyrin/ Human Serum Albumin System

Journal Name:

Publication Year:

Abstract (2. Language): 
Objectives: In this study, we aimed to investigate the effect of temperature on photosensitization of erythrocyte hemolysis by protoporphyrin. We also investigated absorption and fluorescence spectra of erythrocyte/protoporphyrin/human serum albumin system. Material and Methods: Delayed photohemolysis measurements were made in photosensitized erythrocytes by protoporphyrin at irradiation temperatures from 5°C - 35°C and post-irradiation incubation temperatures from 5°C - 42°C. By measuring absorption and emission spectra of protoporphyrin on erythrocyte and human serum albumin (HSA) solutions, erythrocyte/protoporphyrin/HSA system was investigated. Results: Delayed photohemolysis were accelerated at higher irradiation temperature and higher post-irradiation incubation temperature in photosensitized erythrocytes by protoporphyrin. By using spectrometric investigations, strong emission band at 632 nm and a weaker band near 700 nm were determined on erythrocyte/protoporphyrin/HSA system. A 648 photoproduct band was obtained when protoporphyrin was irradiated in the presence of HSA without erythrocyte and this band continued to decrease with increasing irradiation. The formation of the 648 nm band with HSA alone strongly suggests that protoporphyrin bound to erythrocyte reacts with HSA in the buffer. Conclusion: Delayed photohemolysis rate were increased with the square of the light dose over this range of temperature. These temperature dependent photohemolysis curves are consistent with a kinetic model based onmultihit target theory. The spectral and photohemolysis properties of the erythrocytes/protoporphyrin/HSA system have been of interest in connection with erythrocyte from erythropoietic porphyria patients.
Abstract (Original Language): 
Amaç: Bu çalışmalarda protoporfirinle fotosensitize edilmiş eritrositlerdeki hemoliz mekanizmasına sıcaklığın etkisi ile eritrosit/protoporfirin/insan serum albümini sisteminin soğrulma ve floresans spektrumlarının incelenmesi amaçladı. Gereç ve Yöntem: Protoporfirinle fotosensitif hale getirilen insan eritrositleri, çeşitli sıcaklıklarda (5-35°C) görünür ışına maruz bırakılıp, takiben karanlıkta değişik inkübasyon sıcaklıklarında (5-42°C) bekletilerek oluşan gecikmiş fotohemoliz ölçümleriyle birlikte protoporfirinin eritrosit ve serum albümin solüsyonundaki soğrulma ve emisyon spektrumları ölçülerek eritrosit/protoporfirin/insan serum albümini sistemi incelendi. Bulgular: Protoporfirin ile fotosensitize edilmiş eritrositlerde görünür ışık uygulanması ve takip eden karanlık devredeki sıcaklıkların artmasıyla, gecikmiş fotohemolizin hızlandığı görüldü. Spektrometrik incelemelerde eritrosit/ protoporfirin/ insan serum albümini sisteminde 632 nm'de kuvvetli ve 700 nm civarında ise zayıf emisyon bandı izlendi. Protoporfirin ile insan serum albümini bulunan ortamda eritrositlerin varlığından bağımsız olarak 648 nm'de oluşan foto-ürün, uygulanan ışık dozu arttıkça azalmaktadır. Bu 648 nm'deki emisyon bandının varlığının eritrositlere bağlı protoporfirinin tampon içinde insan serum albüminiyle reaksiyona girdiğini gösterdi. Sonuç: Gecikmiş fotohemoliz hızı ışık dozunun karesine olan ilişkisinin sıcaklık değişimi sonucu arttığı ve sıcaklığa bağımlı fotohemoliz eğrilerinin "Çok Vuruşlu Hedef Teori'' ile uyumlu olduğu saptandı. Eritrosit/protoporfirin/insan serum albümini sisteminin spektral ve fotohemolitik özellikleri, eritropoietik porfiri hastalarının eritrosiüeriyle benzerlik gösterdiği belirlendi.
223-229

REFERENCES

References: 

1. Grossweiner LI, Fernandez JM, Bilgin MD. Photosensitization of red blood cell hemolysis for photodynamic agents. Lasers Med Sci 1998; 13: 42-54.
2. Khalili M, Grossweiner LI. Sensitization of photohemolysis by benzoporphyrin derivative monoacid ring A and porphyrins. J Photochem Photobiol B Biol 1997; 37: 236-44.
3. Grossweiner LI. The science of phototherapy: An introduction. Dordrecht: Springer. 2005.
4. Bilgin MD, Al-Akhras MA, Khalili M, Hemmati H, Grossweiner LI. Photosensitization of red blood cell hemolysis for lutetium texaphyrin. Photochem Photobiol 2000; 72: 121-7.
5.
Bilgi
n MD, Elçin AE. Fotosensitize edilen eritrositlerdeki hemoliz kinetic modeli: Çok Vuruşlu Hedef Teori. ADÜ Tıp Fakültesi Dergisi 2004; 5: 5-10.
6. Brun A, Sandberg S. Light-induced redistribution and photobleaching protoporphyrin in erythrocytes in patients with erythropoietic protoporphyria: An explanation of the rapid fading of fluorocytes. J Photochem Photobiol B Biol 1988; 2: 33-41.
7. Brun A, Sandberg S. Mechanisms of photosensitivity in porphyric patients with special emphasis on erythropoietic protoporphyria. J Photochem Photobiol B Biol 1991; 10: 285-302.
8. Reichheld JH, Katz E, Banner BF, Szymanski IO, Saltzman JR, Bonkovsky HL. The value of intravenous heme-albumin and plasmapheresis in reducing postoperative complications of orthotopic liver transplantation for erythropoietic protoporphyria.
Transplantation 1999; 67: 922-8.
9. Richard P, Blum A, Grossweiner LI. Hematoporphyrin photosensitization of serum
albumin and subtilisin BPN. Photochem Photobiol 1983; 37:287-91.
10. Morgan WT, Smith A, Koskelo P. The interaction of human serum albumin and hemopexin with porphyrins. Biochim Biophys Acta 1980; 624: 271-81.
11. Indig GL. Photochemistry of triarylmethane dyes bound proteins. In: Dougherty TJ, Katzir A, eds. Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy V, SPIE 1996, 2675: 228-37.
12. van Steveninck J, Dubbelman TMAR, de Goeij AFPM, Went LN. Binding of
protoporphyrin to hemoglobin in red blood cells of patients with erythropoietic protoporphyria. Hemoglobin 1977; 1:679-90.
13. Brun A, Sandberg S. Photodynamic release of protoporphyrin from intact erythrocytes in erythropoietic protoporphyria: the effect of small repetitive light
doses. Photochem Photobiol 1985; 41:535-41.
14. Pooler JP. A new hypothesis for the target in photohemolysis: Dimers of the band 3
protein. Photochem Photobiol 1985; 43:263-66.
15. Gershfeld NL, Murayama M. Thermal instability of red blood cell membrane bilayers: temperature dependence of hemolysis. Membr Biol 1988; 101: 67-72.
16. Prinsze C, Tijssen K, Dubbelman TMAR, van Steveninck J. Potentiation of hyperthermia-induced haemolysis of human erythrocytes by photodynamic treatment.
Biochem J 1991; 277: 183-8.
17. Thunell S, Harper P, Brun A. Porphyrins, porphyrin metabolismand porphyrias. IV. Pathophysiology of erythropoietic protoporphyria-diagnosis, care and monitoring of
the patient. Scand J Clin Lab Invest 2000; 60: 581-604.
1 8 . B ö hm F, E dge RF o ley S, Lange L, Trus c o tt T G . Antio xidan t inhibition of porphyrin-
induced cellular phototoxicity. J Photochem Photobiol B Biol 2001; 65: 177-83.
19. Murphy GM. Diagnosis and management of erythropoietic porphyrias. Dermatol

Thank you for copying data from http://www.arastirmax.com