[1] G. Liebel, M. Schuster, Erneuerbare Energien 2020: Potentiale und Verwendung in Österreich, 2009.
[2] Szenarien für die Stromnachfrage in Österreich 2005–2020, Umweltbundesamt GmbH, 2009.
[3] Richtlinie 2009/28/EG des Europäischen Parlaments und des Rates vom 23. April 2009 zur Förderung der Nutzung von Energie aus erneuerbaren Quellen und zur Änderung und anschließenden Aufhebung der Richtlinien 2001/77/EG und 2003/30/EG, Amtsblatt L 140/16, 2009.
[4] Sensors for the Smart Grid: Market Opportunities 2010 to 2017, NanoMarkets, 2009.
[5] ICT for a Low Carbon Economy, Smart Buildings, European Comission, 2009.
[6] R. Lang, D. Bruckner, R. Velik, T. Deutsch, Scenario Recognition in Modern Building Automation. International Journal of Intelligent Systems and Technologies, 4(1):36-44, 2009.
[7] D. Bruckner, R. Velik, Behavior learning in dwelling environments with hidden Markov models. IEEE Transactions on Industrial Electronics, 57(11):3653-3660, 2010.
[8] D. Bruckner, C. Picus, R. Velik, W. Herzner, G. Zucker, High-level hierarchical semantic processing framework for smart sensor networks, Human-Computer System Interaction: Backgrounds and Applications, pp. 347-358. Springer Berlin/Heidelberg, 2009.
[9] D. Magnor, N. Soltau, M. Bragard, A. Schmiegel, R. W. De Doncker, D. U. Sauer, Analysis of the Model Dynamics for the Battery and Battery Converter in a Grid-connected 5 kW Photovoltaic System, PVSEC 2010.
[10] R. Velik, G. Zucker, D. Dietrich, Towards automation 2.0: A neuro-cognitive model for environment recognition, decision-making, and action execution, EURASIP Journal on Embedded Systems, 2011(11), 2011.
[11] R. Velik, AI Reloaded: Objectives, Potentials, and Challenges of the Novel Field of Brain-Like Artificial Intelligence, BRAIN Broad Research in Artificial Intelligence and Neuroscience, 3(3): 25–54, 2012.
[12] R. Velik, A Bionic Model for Human-like Machine Perception. PhD thesis, Vienna University of Technology, 2008
[13] R. Velik, D. Bruckner, Neuro-symbolic networks: Introduction to a new information processing principle. In 6th IEEE International Conference on Industrial Informatics, pp. 1042-1047, 2008.
[14] R. Velik, A model for multimodal humanlike perception based on modular hierarchical symbolic information processing, knowledge integration, and learning. In 2nd IEEE International Conference on Bio-Inspired Models of Network, Information and Computing Systems, pages 168-175, 2007.
[15] R. Velik, D. Bruckner, R. Lang, T. Deutsch, Emulating the Perceptual System of the Brain for the Purpose of Sensor Fusion. Human-Computer System Interaction: Backgrounds and Applications, pp. 17–27, Springer Berlin/Heidelberg, 2009.
[16] R. Velik, Why Machines Cannot Feel. Minds and Machines, Springer, Volume 20, Issue 1, pp. 1-18, 2010.
[17] R. Velik, G. Pratl, R. Lang: A Multi-sensory, Symbolic, Knowledge-based Model for Human-like Perception. Proceedings of the 7th IFAC International Conference on Fieldbuses & Networks in Industrial & Embedded Systems, pp. 273-278, 2007.
[18] R. Velik, Towards Human-like Machine Perception 2.0. International Review on Computers and Software (IRECOS), Special Section on Advanced Artificial Networks, 2010.
[19] R. Velik, A Bionic Model for Human-like Machine Perception. Suedwestdeutscher Verlag fuer Hochschulschriften. 2008.
[20] R. Velik, D. Bruckner, A bionic approach to dynamic, multimodal scene perception and interpretation in buildings. International Journal of Intelligent Systems and Technologies, 4(1):1-9, 2009.
International Journal of Science and Engineering Investigations, Volume 2, Issue 17, June 2013 72
www.IJSEI.com Paper ISSN: 2251-8843 ID: 21713-12
[21] R. Velik, The neuro-symbolic code of perception. Journal of Cognitive Science, 11(2):161-180, 2010.
[22] R. Velik, From simple receptors to complex multimodal percepts: A first global picture on the mechanisms involved in perceptual binding. Frontiers in Cognitive Science, 3:1-13, 2012.
[23] R. Velik, H. Boley, Neurosymbolic alerting rules. IEEE Transactions on Industrial Electronics, 57(11):3661-3668, 2010.
[24] T. Deutsch, A. Gruber, R. Lang, R. Velik, Episodic memory for autonomous agents, Conference on Human System Interactions, pp. 621-626, 2008.
[25] W. Burgstaller, R. Lang, P. Poerscht, R. Velik, Technical model for basic and complex emotions. In 5th IEEE International Conference on Industrial Informatics, volume 2, pp. 1007-1012, 2007.
[26] R. Lang, H. Zeilinger, T. Deutsch, R. Velik, B. Mueller. Perceptive Learning – A Psychoanalytical Learning Framework for Autonomous Agents. Proceedings of the International Conference of Human System Interaction, 2008.
[27] R. Velik, G. Zucker, Autonomous perception and decision-making in building automation. IEEE Transactions on Industrial Electronics, 57(11):3645-3652, 2010.
Thank you for copying data from http://www.arastirmax.com