You are here

A Special Characterization for Joachimsthal and Terquem Type Theorems

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In this paper, we investigate the eneryg of two curves on different surfaces and strips in type of curvatures of strips at first time. We also observe some characterizations of finding energy of the curves on spherical helix strip by using Terquem Theorem (one of the Joachimsthal Theorems).

REFERENCES

References: 

[1] Beardon, A. The Geometry Discrete Groups Springer-Verlag, Berlin,
1983, 9-81p.
[2] Ertem Kaya, F., Yaylı, Y., Hacısalihoglu, H. H. Harmonic Curvature of
a Strip in
3 E ,Communications de la faculté des Sciences De Université
d.Ankara Serie A1, Tome 59, Number 2, 2010, Pages 37-51.
[3] Ertem Kaya, F. Harmonic curvature of the curve-surface pair under
Möbius Transformation, International Journal of Physical Sciences, Vol.
8(21), 2013, pp. 1133-1142.
[4] Ertem Kaya F., Yaylı Y., Hacısalihoglu H. H., The Conical Helix Strip
in
3 E , Int. J. Pure Appl. Math. Volume 66, No(2), Pages 145-156,
2011.
[5] Ertem Kaya F., .Terquem Theorem with the Spherical helix Strip., Pure
and Applied Mathematics Journal, Applications of Geometry, Vol. 4,
Issue Number 1-2, January 2015,DOI:
10.11648/j.pamj.s.2015040102.12
[6] On Involute and Evolute of the Curve and Curve-Surface Pair in
Euclidean 3-Space, Pure and Applied Mathematics Journal, Applications
of Geometry, Vol. 4, Issue Number 1-2, January 2015, DOI:
10.11648/j.pamj.s.2015040102.11.
[7] Gang Hu, Xinqiang Qin, Xiaomin Ji, Guo Wei, Suxia Zhang, The
construction of B-spline curves and itsapplication to rotational surfaces,
Applied Mathematics and Computation 266 (2015) 194.211.
[8] Gluck, H. Higher Curvatures of Curves in Eucliden Space, Amer. Math.
Montly. 73, 1966, pp: 699-704.
[9] Hacısalihoglu, H. H. On The Relations Between The Higher Curvatures
Of A Curve and A Strip., Communications de la faculté des Sciences De
Université d.Ankara Serie A1, (1982), Tome 31.
[10] Keles, S. Joachimsthal Theorems for Manifolds [PhD] Fırat University,
1982, pp. 15-17.
[11] http://tr.wikipedia.org/wiki/Enerji
[12] Horn, B. K. P., The Curve of Least Energy, Massachusetts Institute of
Technology, ACM Transactions on Mathematical Software, Vol. 9, No.
4, December 1983, Pages 441-460.

Thank you for copying data from http://www.arastirmax.com