You are here

ŞABLON EŞLEME YÖNTEMİ KULLANILARAK MAMOGRAMLARDAKİ VE AKCİĞER BT’LERİNDEKİ ANORMALLİKLERİN BİLGİSAYAR DESTEKLİ TESPİTİ: BİR DERLEME ÇALIŞMASI

COMPUTER AIDED DETECTION OF ABNORMALITIES IN MAMMOGRAMS AND CHEST COMPUTED TOMOGRAPHIES USING THE TEMPLATE MATCHING METHOD: A REVIEW

Journal Name:

Publication Year:

Abstract (2. Language): 
In this review paper, it is intended to summarize and compare the template matching methods of automatic detection of abnormalities in digitized mammograms and chest computed tomography images used in various stages of the Computer Aided Detection systems (CAD). In particular, segmentation algorithms, feature extraction, selection and classification analysis and their performances are studied and compared.
Abstract (Original Language): 
Bu derleme çalışmasında mamogramlarda ve akciğer bilgisayarlı tomografilerinde (BT) son yıllarda şablon eşleme yöntemi kullanılarak gerçekleştirilmişolan bilgisayar destekli tespit (BDT) sistemlerinin incelenmesi ve karşılaştırılması amaçlanmıştır. Özellikle bölütlendirme, özellik hesaplama ve sınıflama amacıyla kullanılan teknikler incelenmiştir.
101-118

REFERENCES

References: 

Farag A.A., El-Baz A., Gimel'farb G.L. ve Falk R., (2004), “Detection and
Recognition of Lung Abnormalities Using Deformable Templates”, IEEE
Proceedings of the 17th International Conference onPattern Recognition (ICPR’04),
3, 738 – 741.
Serhat ÖZEKES, A. Yılmaz ÇAMURCU
118
Giger M. L., Karssemeijer N. ve Armato S. G., (2001), ‘‘Computer Aided Diagnosis
in Medical Imaging,’’ IEEE Trans. Med. Imag., 20, 1205–1208.
Hadjiiski M., Chan H. P., Sahiner B., Petrick N. veHelvie M. A., (2001),
“Automated Registration of Breast Lesions in Temporal Pairs of Mammograms for
Interval Change Analysis—Local Affine Transformationfor Improved
Localization”, Med. Phys., 28, 1070–1079.
Hatanaka Y., Hara T., Fujita H., Kasai S., Endo T. ve Iwase T., (2001),
“Development of An Automated Method for Detecting Mammographic Masses
With A Partial Loss of Region”, IEEE Transactions on Medical Imaging, 20, 1209-1214.
Kakinuma R., Ohmatsu H. ve Kaneko M., ( 1999), “Detection Failures in Spiral CT
Screening for Lung Cancer: Analysis of CT Findings”, Radiology, 212, 61–66.
Lee Y., Hara T. ve Fujita H., (2001), “Automated Detection of Pulmonary Nodules
in Helical CT Images Based on An Improved Template-Matching Technique”, IEEE
Trans. Med. vol. 20, 595-604.
Li F., Sone S., Abe H., MacMahon H., Armato S. ve Doi K., (2002), “Lung Cancers
Missed at Low-Dose Helical CT Screening in A General Population: Comparison of
Clinical, Histopathologic, and Imaging Findings,” Radiology, vol. 225, 673–683.
Ozekes S., Osman O. ve Camurcu A.Y., (2005), “Mammographic Mass Detection
Using A Mass Template”, Korean J Radiol, 6, 221-228.
Tourassi G.D., Vargas-Voracek R., Catarious D.M. veFloyd C.E., (2003),
“Computer-Assisted Detection of Mammographic Masses: A Template Matching
Scheme Based on Mutual Information”, Medical Physics, 30, 2123-2130.
Wang P., DeNunzio A., Okunieff P. ve O’Dell W.G., (2005), “Metastatic Lung
Tumor Early Detection Using 3D Template Matching”, International Journal of
Radiation Oncology, Biology, Physics

Thank you for copying data from http://www.arastirmax.com