You are here

Inverse System in the Category of Šostak Fuzzy Topological Spaces

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In this study, we first define the concept of inverse limit in category of FTS S ∨ , the category of Šostak fuzzy topological spaces and gp-maps between them. After giving the fundamental definitions we investigate series of their properties.
77-96

JEL Codes:

REFERENCES

References: 

[1] S.E.Abbas, On intuitionistic fuzzy compactness, Information Sciences 173 (2005),
75-91.
[2] C.L.Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24(1968), 182-190.
[3] K.C. Chattopadhyay, R.N.Hazra, S.K.Samanta, Gradation of openness: fuzzy
topology, Fuzzy Sets and Systems 49(1992), 237-242.
[4] S. Eilenberg, N.Steenrod, Foundations of Algebraic Topology, Princeton University
Pres, 1952.
[5] R.Engelking, General Topology, Polish Scientific Publishers, Warszawa, 1977.
[6] J. Fang, Sums of L -fuzzy topological spaces, Fuzzy Sets and Systems 157(2006),
739- 754.
[7] J. Fang, Y.Yue, Base and subbase in I -fuzzy topological spaces, J.Math. Res.
Exposition 26 (2006), 89-95.
[8] U. Höhle, A. Šostak, Axiomatic foundations of variable- basis fuzzy topology, in:
U.Höhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and
Measure Theory, the Handbooks of Fuzzy Sets Series, vol.3, Kluwer Academic
Publishers, Boston/ Dordrecht/ London (1999), 123-272.
[9] T.Kubiak, On fuzzy topologies, Ph. D.Thesis, Adam Mickiewicz, Ponzan, Poland,
1985.
[10] S. –G. Li, Inverse limits in category ( )1 LTop I , Fuzzy Sets and Systems 108
(1999), 235- 241.
[11] S. –G. Li, Inverse limits in category ( )1 LTop II , Fuzzy Sets and Systems 109
(2000), 291-299.
[12] T.K. Mondal, S.K.Samanta, On intuitionistic gradation of openness, Fuzzy Sets
and Systems 131 (2002), 323-336.
[13] A.A. Rammadan, Y.C. Kim, S.E. Abbas, Compactness in Intuitionistic Gradation
of Openness, The Journal of Fuzzy Mathematics, Vol. 13, No.3, (2005), 581-600.
[14] F. –G. Shi, A new definition of fuzzy compactness, Fuzzy Sets and Systems 158
(2007), 1486-1495.
[15] A. Šostak, On a fuzzy topological structure, Rendiconti Ciecolo Matematico
Palermo (Supp. Ser. II) 11 (1985), 89-103.
[16] A. Šostak, Two decades of fuzzy topology: Basic ideas notions and results, Russian
Math. Surveys 44 (6),(1989), 125-186.
[17] A. Šostak, Basic structures of fuzzy topology, J.Math. Sci. 78 (1996),662-701.
[18] M.Ying, A new approach for fuzzy topology (I), Fuzzy Sets and Systems 39 (3)
(1991), 303-321.
[19] M.Ying, A new approach for fuzzy topology (III), Fuzzy Sets and Systems 55
(1993), 193-207.
[20] Y. Yue, J.Fang, Generated I - fuzzy topological spaces, Fuzzy Sets and Systems
154 (2005), 103-117.
[21] Y. Yue, Lattice-valued induced fuzzy topological spaces, Fuzzy Sets and Systems
158 (2007), 1461-1471.

Thank you for copying data from http://www.arastirmax.com