[1] Bezivin J.P.: Linear Independence of the Values of Transcendental Solutions of Some Functional Equations, Manuscripts. Math, 81(1988) no.l, 103-129,
[2] Hancl J.: Linearly unrelated sequences. Pacific J. Math., vol.190, no.2, (1999), 299-310.
[3] Kubota K.K.; On the algebraic independence of holomorphic solutions of certain functional equations and their values,, Math. Ann, 227, (1977), 9-50.
[4] Loxton J.H,, van der Poorten A.J.: Algebraic independence properties of the Fredholm series, J. Austral. Math. Soc, ser A., 26, (1978), 31-45,
[5] Nishioka K.: Mahler functions and transcendence, Lecture notes in mathematics 1631, Spiringer, (1996).
[6] Sorokin V.N.: Linear Independence of Logarithm of Some Rational Numbers, Mat, Zametki 46 (1989) no.3. 74-79,127, translated in Math. Notes 46 (1989), no,3-4, 727-730,
[7] Topfer T,: Algebraic independence of the values of generalized Mahler functions, Acta Arith. LXX, (1995), 161-181,
Thank you for copying data from http://www.arastirmax.com