[1] 4ti2 team. 4ti2—a software package for algebraic, geometric and combinatorial problems on
linear spaces. Available at www.4ti2.de.
[2] S. Aoki, H. Hara, and A. Takemura. Markov Bases in Algebraic Statistics, volume 199 of
Springer Series in Statistics. Springer, 2012.
[3] S. Aoki, T. Hibi, H. Ohsugi, and A. Takemura. Markov basis and Gr¨obner basis of Segre-
Veronese configuration for testing independence in group-wise selections. Annals of the
Institute of Statistical Mathematics, 62(2):299–321, 2010.
[4] Y. Berstein and S. Onn. The Graver complexity of integer programming. Annals of Combinatorics,
13(3):289–296, 2009.
[5] P. Diaconis and N. Eriksson. Markov bases for noncommutative Fourier analysis of ranked
data. Journal of Symbolic Computation, 41(2):182–195, 2006.
[6] P. Diaconis and B. Sturmfels. Algebraic algorithms for sampling from conditional distributions.
The Annals of Statistics, 26(1):363–397, 1998.
[7] M. Domokos and D. Jo´o. On the equations and classification of toric quiver varieties.
arXiv:1402.5096v1, 2014.
[8] M. Drton, B. Sturmfels, and S. Sullivant. Lectures on Algebraic Statistics, volume 39 of
Oberwolfach Seminars. Birkh¨auser Verlag, Basel, 2009.
REFERENCES 107
[9] C. Haase and A. Pa↵enholz. Quadratic Gr¨obner bases for smooth 3 ⇥ 3 transportation polytopes.
Journal of Algebraic Combinatorics, 30(4):477–489, 2009.
[10] H. Hara, A. Takemura, and R. Yoshida. On connectivity of fibers with positive marginals in
multiple logistic regression. Journal of Multivariate Analysis, 101:909–925, 2010.
[11] D. Haws, A. Martin del Campo, A. Takemura, and R. Yoshida. Markov degree of the threestate
toric homogeneous Markov chain model. Beitr¨age zur Algebra und Geometrie, 55:161–
188, 2014.
[12] T. Hibi, editor. Gr¨obner Bases: Statistics and Software Systems. Springer, Tokyo, Japan,
2013.
[13] T. Kudo and A. Takemura. A lower bound for the Graver complexity of the incidence matrix
of a complete bipartite graph. Journal of Combinatorics, 3(4):695–708, 2012.
[14] K. Ohara and N. Takayama. Pfaffian systems of A-hypergeometric systems II — holonomic
gradient method. arXiv:1505.02947 [cs.SC], 2015.
[15] H. Ohsugi and T. Hibi. Toric rings and ideals of nested configurations. Journal of Commutative
Algebra, 2:187–208, 2010.
[16] F. Santos and B. Sturmfels. Higher Lawrence configurations. Journal of Combinatorial
Theory, Series A, 103(1):151–164, 2003.
[17] B. Sturmfels. Gr¨obner Bases and Convex Polytopes, volume 8 of University Lecture Series.
American Mathematical Society, Providence, RI, 1996.
[18] N. Takayama. Gr¨obner basis for rings of di↵erential operators and applications. In Gr¨obner
Bases: Statistics and Sofware Systems, pages 279–344. Springer, Tokyo, 2013.
[19] T. Yamaguchi, M. Ogawa, and A. Takemura. Markov degree of the Birkho↵ model. Journal
of Algebraic Combinatorics, 40(1):293–311, 2014.
Thank you for copying data from http://www.arastirmax.com