[1] J. Hale, Functional Differential Equations, New York: Springer-Verlag, 1977.
[2] T. Li, L. Guo, C. Sun, C. Lin, “Further results on delay-dependent stability criteria of neural networks with time-varying delays,” IEEE Transactions on Neural networks, vol.19, no.4, pp.4726-730, 2008.
[3] X. Jiang, Q.-L. Han, S. Liu, A. Xue, “A new H∞ stabiliza tion criterion for networked control systems,” IEEE Trans. Automat. Control, vol.53, pp.1025-1032, 2008.
[4] H. Shao, “Delay-dependent approaches to globally exponential stability for recurrent neural networks,” IEEE Trans. Circuits Systems II, vol.55, pp. 591-595, 2008.
[5] H. Shao, “Delay-range-dependent robust H∞ filtering for uncertain stochastic systems with mode-dependent time delays and Markovian jump parameters,” Journal of Math. Anal. Appl., vol.342, pp.1084-1095, 2008.
[6] X.-L. Zhu, G. Yang, “New results of stability analysis for systems with time-varying delay,” International Journal of Robust and Nonlinear Control, vol. 20, no.5, pp. 596-606, 2010.
[7] S. I. Niculescu, A. T. Neto, J. M. Dion, L. Dugard, “Delay-dependent stability of linear systems with delayed state: An LMI approach,” in: Proc. 34th IEEE Conf. Decision and Control, New Orleans, LA, 1995, pp. 1495-1496.
[8] L. Xie, C.E. de Souza, “Criteria for robust stability and stabilization of uncertain linear systems with state-delay,” Automatica, vol.33, pp.1657-1622, 1997.
[9] K. Gu, “An integral inequality in the stability problem of time-delay systems,” in: Proc. 39th IEEE conf. decision and control, Sydney, Australia, 2000, pp. 2805-2810.
[10] X. Jiang, Q.-L. Han, “On H∞ control for linear systems with interval time-varying delay,” Automatica, vol.41, pp.2099-2106, 2005.
[11] J. Wu, T. Chen, L. Wang, “Delay-dependent robust stability and H∞ control for jump linear systems with delays,” Systems and Control Letters. vol.55, pp. 937-948, 2006.
[12] S. Xu, J. Lam, “On equivalence and efficiency of certain stability criteria for time-delay systems,” IEEE Trans. Automat. Control, vol.52, pp. 95-101, 2007.
[13] Y. He, Q.Wang, C. Lin, M. Wu, “Delay-range-dependent stability for systems with time-varying delay,” Automatica, vol.43, pp.371-376, 2007.
[14] H. Shao, “Improved delay-dependent stability criteria for systems with a delay varying in a range,” Automatica, vol.44, no.12, pp.3215-3218, 2008.
[15] X.-L. Zhu, Y. Wang, G. Yang, “New stability criteria for continuous-time systems with interval time-varying delay,” IET Control Theory & Applications, vol.4, no.6, pp.1101-1107, 2010.
[16] H. Shao, “New delay-dependent stability criteria for systems with interval delay,” Automatica, vol.45, no.3, pp.744-749, 2009.
[17] J. Lam, H. Gao, C. Wang, “Stability analysis for continous systems with two additive time-varying delay components,” Systems & Control Letters, vol.56, pp.16-24, 2007.
[18] H. Gao, T. Chen, J. Lam, “A new delay sytem approach to network-based control,” Automatica, vol.44, pp.39-52, 2008.
[19] H. Shao, Q.-L. Han, “Less conservative delay-dependent stability criteria for linear systems with interval time-varying delays,” International Journal of Systems Sciences, (DOI:10.1080/00207721.2010.543480).
[20] L. El Ghaoui, F. Oustry, M.
[21] A. Rami, “A cone complementarity linearization algorithm for static output-feedback and related problems,” IEEE Trans. Automat. Control, vol.42, pp.1171-1176, 1997.
Thank you for copying data from http://www.arastirmax.com