You are here

Global Chaos Synchronization for WINDMI and Coullet Chaotic Systems Using Active Control

Journal Name:

Publication Year:

Abstract (2. Language): 
In this paper, global chaos synchronization problem is investigated for WINDMI (J.C. Sportt, 2003) and Coullet (P. Coullet, et al., 1979) chaotic systems using active feedback control. Our theorems on synchronization for WINDMI and Coullet chaotic systems are established using Lyapunov stability theory. The controller design can be divided into two steps: the first one needs the derivation of control Lyapunov function and the second step involves using existing control Lyapunov function to synchronize the chaotic system. The active control method is effective and convenient to synchronize the chaotic systems. Mainly this technique gives the flexibility to construct a control law. Numerical simulations are also given to illustrate and validate the synchronization results derived in this paper.
69-75

REFERENCES

References: 

[1] H. Fujisaka, T. Yamada, “Stability theory of synchronized
motion in coupled-oscillator systems”, Progress of
Theoretical Physics, vol. 69, no. 1, pp. 32-47, 1983.
[2] L.M. Pecora, T.L. Carroll, “Synchronization in chaotic
systems,” Phys. Rev. Lett., vol. 64, pp. 821-824, 1990.
[3] L.M. Pecora, T.L. Carroll, “Synchronizing chaotic circuits,”
IEEE Trans. Circ. Sys., vol. 38, pp. 453-456, 1991.
[4] K.T. Alligood, T. Sauer and J.A. Yorke, Chaos: An
Introduction to Dynamical Systems, Berlin, Germany:
Springer-Verlag, 1997.
[5] Edward Ott, Chaos in Dynamical Systems, Cambridge, United
Kingdom, Cambridge University Press, 2002.
[6] Wang, Y.M. and Zhu, H. (2006) „Generalized synchronization
of continuous chaotic systems‟, Chaos, Solitons and Fractals,
Vol. 27, 97–101.
[7] Z.M. Ge, C.C. Chen, (2004) „Phase synchronization of
coupled chaotic multiple time scales systems‟, Chaos,
Solitons and Fractals, Vol. 20, pp. 639–647.
[8] J. Qiang, (2007) „Projective synchronization of a new hyper
chaotic Lorenz systems‟, Phys. Lett. A, Vol. 370, pp. 40–45.
[9] Y. Jian-Ping, L. Chang-Pin, (2006) „Generalized projective
synchronization for the chaotic Lorenz systems and the
chaotic Chen system‟, Journal of Shanghai University, Vol.
10, pp. 299–304.
[10] R.H. Li, W. Xu and S. Li (2007) „Adaptive generalized
projective synchronization in different chaotic systems based
on parameter identifiction‟, Phys. Lett. A, Vol. 367, pp. 199–
206.
[11] V. Sundarapandian, P. Sarasu (2012) „Generalized projective
synchronization of double-scroll chaotic systems using active
feedback control‟, CCSIT 2012, Part-I, LNICST Vol. 84,
Springer Heldelberg, Dordrecht, London, Newyork, pp. 111–
118.
[12] P. Sarasu, V. Sundarapandian (2012) „Generalized projective
synchronization of three-scroll chaotic systems via. active
control‟, CCSIT 2012, Part-I, LNICST Vol. 84, Springer
Heldelberg, Dordrecht, London, Newyork, pp. 124–133.
[13] R.H. Li, (2008) „A speial full-state hybrid projective
synchronization in symmetical chaotic systems‟, Applied
Math. Comput, Vol. 200, pp. 321–329.
[14] V. Sundarapandian, R. Suresh, (2012) „Hybrid
synchronization of Arneodo and R¨ossler chaotic systems by
active nonlinear control‟, CCSIT 2012, Part-I, LNICST Vol.
84, Springer Heldelberg, Dordrecht, London, Newyork, pp.
257–266.
[15] V. Sundarapandian, S. Sivaperumal, (2012) „Hybrid
synchronization of hyper chaotic Chen system via sliding
mode control‟, CCSIT 2012, Part-I, LNICST Vol. 84,
Springer Heldelberg, Dordrecht, London, Newyork, pp. 73–82.
Journal of Control Engineering and Technology (JCET)
JCET Vol. 3 Iss. 2 April 2013 PP. 69-75 www.ijcet.org ○C American V-King Scientific Publishing
75
[16] K. Murali, M. Lakshmanan, (2003) „Secure communication using a compound signal using sampled-data feedback‟, Applied Mathematics and Mechanics, Vol. 11, pp.1309–1315.
[17] T. Yang, L.O. Chua, (1999) „Generalized synchronization of chaos via linear transformations‟, Internat. J. Bifur. Chaos, Vol. 9, pp. 215–219.
[18] K. Murali, M. Lakshmanan, (1996) Chaos in Nonlinear Oscillators: Controlling and Synchronization, Singapore: World Scientific.
[19] S.K. Han, C. Kerrer and Y. Kuramoto, (1995) „D-phasing and bursting in coupled neural oscillators‟, Phys. Rev. Lett., Vol. 75, pp. 3190–3193.
[20] B. Blasius, A. Huppert and L. Stone, (1999) „Complex dynamics and phase synchronization in spatially extended ecological system‟, Nature, Vol. 399, pp.354–359.
[21] L. Kocarev, U. Parlitz, (1995) „General approach for chaotic synchronization with applications to communications,‟ Phys. Rev. Lett., Vol. 74, 5028–5030.
[22] Zuolei Wang, (article in press), „Chaos synchronization of an energy resource system based on linear control,‟ Nonlinear Analysis: Real world Application.
[23] Jiang Wang, Lisong Chen, Bin Deng, (2009), „Synchronization of ghost burster neurons in external electrical stimulation via H1 variable universe fuzzy adaptive control,‟ Chaos, Solitons and Fractals, Vol. 39, 2076–2085.
[24] F.M. Moukam Kakmeni, J.P. Nguenang and T.C. Kofane (2006), „Chaos synchronization in bi-axial magnets modeled by bloch equation,‟ Chaos, Solitons and Fractals, Vol. 30, 690–699.
[25] J.L. Hindmarsh, R.M. Rose (1984), „A model of neuronal bursting using 3-coupled 1st order differential equations,‟ Proc. Roy. Soc. Lond. B. Biol, Vol. 221, 81–102.
[26] Yan-Qiu Che, Jiang Wang, Kai-Ming Tsang and Wai-Lok Chen, (2010), „Unidirectional synchronization for Hindmarsh-Rose neurons via robust adaptive sliding mode control,‟ Nonlinear Analysis: Real world Application, Vol. 11, 1096–1104.
[27] Guang Zhao Zeng, Lan Sun Chen and Li Hua Sun, (2005), „Complexity of an SIR epidemic dynamics model with impulsive vaccination control,‟ Chaos, Solitons and Fractals, Vol. 26, 495–505.
[28] Junxa Wang, Dianchen Lu and Lixin Tian (2006), „Global synchronization for time delay WINDMI system,‟ Chaos, Solitons and Fractals, Vol. 30, 629–635.
[29] E. Ott, C. Grebogi and J.A. Yorke (1990), „Controlling chaos,‟ Phys. Rev. Lett., Vol. 64, 1196–1199.
[30] K. Murali, M. Lakshmanan, (2003), „Secure communication using a compound signal using sampled-data feedback,‟ Applied Mathematics and Mechanics, Vol. 11, 1309–1315.
[31] J.H. Park, O.M. Kwon, (2003), „A novel criterion for delayed feedback control of time-delay chaotic systems,‟ Chaos, Solitons and Fractals, Vol. 17, 709–716.
[32] J. Lu, X. Wu, X. Han and J. Lu (2004), „Adaptive feedback synchronization of a unified chaotic system,‟ Phys. Lett. A, Vol. 329, 327–333.
[33] J.H. Park., S.M. Lee and O.M. Kwon (2007), „Adaptive synchronization of Genesio-Tesi chaotic system via a novel feedback control,‟ Physics Letters A., Vol. 371, 263-270.
[34] J.H. Park. (2008), „Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters,‟ J. Computational and Applied Math., Vol. 213, 288–293.
[35] H.T. Yau (2004), „Design of adaptive sliding mode controller for chaos synchronization with uncertainties,‟ Chaos, Solitons and Fractals, Vol. 22, 341–347.
[36] V. Sundarapandian (2011), „Global chaos synchronization of the Pehlivan systems by sliding mode control,‟ International J. Computer Science and Engineering, Vol. 03, 2163-2169.
[37] V. Sundarapandian, S. Sivaperumal (2012), „Sliding mode controller design for global chaos synchronization of Coullet chaotic systems,‟ International Journal of Information Science and Techniques, Vol. 2, 65-76.
[38] V. Sundarapandian, R. Suresh (2010), „Global chaos synchronization for Rossler and Arneodo chaotic systems by nonlinear control‟, Far East Journal of Applied Mathematics, Vol. 44, 137-148.
[39] V. Sundarapandian, R. Suresh, (2010) „New results on the global chaos synchronization for Liu-Chen-Liu and Lu chaotic systems‟, PEIE 2010, CCIS Vol. 102, Springer-Verlag Berlin Heidelberg, pp. 20–27.
[40] X. Wu, J. Lu (2003), „Parameter identification and backstepping control of uncertain Lu system,‟ Chaos, Solitons and Fractals, Vol. 18, 721–729.
[41] Y.G. Yu, S.C. Zhang (2006), „Adaptive backstepping synchronization of uncertain chaotic systems,‟ Chaos, Solitons and Fractals, Vol. 27, 1369–1375.
[42] J.C. Sprott, “Chaos and time series analysis”, Oxford University Press, Newyork, USA, 2003.
[43] P. Coullet, C. Tresser and A. Arneodo, “Transition to stochasticity for a class of forced oscillators”, Phys. Lett. A. vol. 72, pp. 268-270, 1979.
[44] W. Hahn, “The stability of Motion”, Berlin, Germany: Springer- Verlag, 1967.

Thank you for copying data from http://www.arastirmax.com