You are here

THE ACCEPTANCE OF MICROBLOGGING IN THE LEARNING PROCESS: THE μBAM MODEL

Journal Name:

Publication Year:

DOI: 
http://dx.doi.org/10.3926/jotse.65
Abstract (2. Language): 
Microblogging social networks (μBSNs) provide the opportunity to communicate worldwide while using a small number of characters; this is an apparent limitation that forces users to share only essential information when linking to the world with which they interact. These platforms can serve to motivate students by narrowing the physical and psychological distances separating teachers and students, thus increasing their confidence and engagement in the learning process. The main thrust of this paper is the notion that μBSNs open a window to informal knowledge, self-directed learning and the creation of knowledge-based networks for use in a classroom setting. To examine this issue in greater depth, an experiment was carried out using a μBSN before, during and after face-to-face class sessions. In this study we used the Technology Acceptance Model (TAM), incorporating some of the constructs commonly found in the scientific literature. These constructs refer to the effect of subjective norms and social images on the use of web-based social networks. The analysis gave rise to a robust and parsimonious model of social network usage behavior that confirmed the proposed research hypotheses. The findings demonstrated that the extended TAM model is suitable for explaining the acceptance of web-based teaching tools as well as the validity of microblogging networks in combination with traditional classes.
31-48

REFERENCES

References: 

Agarwal, R. & Karahanna, E. (2000). Time flies when you’re having fun: Cognitive absorption and beliefs about
information technology usage. MIS Quarterly, 24(4), 665-694. http://dx.doi.org/10.2307/3250951
Agarwal, R. & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the
domain of information technology. Information System Research. A Journal of Institute of Management
Sciences, 9(2), 204-215. http://dx.doi.org/10.1287/isre.9.2.204
Ajzen, I. & Fishbein, M. (1980). Understanding attitudes and predicting social behaviour. Engelwood Cliffs, NJ:
Prentice-Hall.
Arteaga. R. & Duarte, A. M. (2010). Motivational factors that influence the acceptance of Moodle using TAM.
Computer in Human Behavior, 26 (6), 1632-1640. http://dx.doi.org/10.1016/j.chb.2010.06.011
Bandura (1982). Self-efficacy mechanism in human agency. American Psychologist, 37, 122-147.
http://dx.doi.org/10.1037/0003-066X.37.2.122
Bhattacherjee, A. & Premkumar, G.P. (2004). Understanding Changes in Belief and Attitude Toward Information
Technology Usage: A Theoretical Model and Longitudinal Test. MIS Quarterly, 28(2), 229-254.
Bhattacherjee, A. (2000). Adoption of IS services: The case of electronic brokerages. IEEE Transactions on
Systems, Man, and Cybernetics – Part A: Systems and Humans, 30(4), 411-420.
http://dx.doi.org/10.1109/3468.852435
Castañeda, J.A., Muñoz-Leiva, F. & Luque, T. (2007). Web Acceptance Model (WAM): Moderating effects of user
experience. Information & Management, 44(4), 384-396. http://dx.doi.org/10.1016/j.im.2007.02.003
Chen, L.D., Gillenson, M.L. & Sherrell, D. L. (2002). Enticing online consumers: An extended technology
acceptance perspective. Information & Management, 39, 705-719. http://dx.doi.org/10.1016/S0378-
7206(01)00127-6
Chen, P.S.D., Lambert, A.D. & Guidry, K.R. (2010). Engaging online learners: The impact of Web-based learning
technology on college student engagement. Computers & Education, 54, 1222-1232.
http://dx.doi.org/10.1016/j.compedu.2009.11.008
Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance. MIS Quarterly, 13(3), 319.
http://dx.doi.org/10.2307/249008
Davis, F.D., Bagozzi, R.P. & Warshaw, P.R. (1989). User Acceptance of computer technology: A comparison of two
theoretical models. Management Science, 35(8), 982-1003. http://dx.doi.org/10.1287/mnsc.35.8.982
Davis, F.D., Bagozzi, R.P. & Warshaw, P.R. (1992). Extrinsic and intrinsic motivation to use computers in the
workplace. Journal of Applied Social Psychology, 22(14), 1111-1132. http://dx.doi.org/10.1111/j.1559-
1816.1992.tb00945.xDavis, S. & Wiedenbeck, S. (2001). The mediating effects of intrinsic motivation, ease of use and usefulness
perceptions on performance in first-time and subsequent computer users. Interacting with Computers, 13,
549-580. http://dx.doi.org/10.1016/S0953-5438(01)00034-0
Ebner, M., Lienhardt, C., Rohs, M. & Meyer, I. (2010). Microblogs in Higher Education – A chance to facilitate
informal and process-oriented learning? Computers & Education, 55, 92-100.
http://dx.doi.org/10.1016/j.compedu.2009.12.006
EduTwitter (2011). Red Wiki, ¿Por qué usamos Twitter? Retrieved from. http://eduTwitter.wikispaces.com/
¿Por+qué+utilizamos+Twitter%3F
Featherman, M.S. & Pavlov, P.A. (2003). Predicting E-services adoption: A perceived risk facets perspective.
International Journal of Retail and Distribution Management, 35(8), 982-1003.
Fishbein, M. & Ajzen, I. (1975). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and
Research. Reading, MA: Addison-Wesley.
Gefen, D. & Straub, D. (1997). Gender differences in perception and adoption of email: An extension to the
technology acceptance model. MIS Quarterly, 21(4), 389-400.
Gefen, D., Karahanna, E. & Straub, D.W. (2003b). Trust y TAM in online shopping: An integrated Model. MIS
Quarterly, 27(1), 51-90. http://dx.doi.org/10.2307/249720
Hair, J.F., Anderson, R.E., Tatham, R.L. & Black, W.C. (1999). Multivariate data analysis. New Jersey: Prentice-Hall
Herbert, M. & Benbasat, I. (1994). Adopting information technology in Hospitals: The relationship between
attitudes, expectations and behaviour. Hospital and Health services Administration, 39(3), 369-383.
Hu, L. & Bentler, P. (1995). Evaluating model fit. In R. Hoyle (Ed.), Structural equation modeling: Concepts, issues
and applications. Thousand Oaks, CA: Sage Publications. Pp. 76-99.
Hu, P.J., Chau, P.Y.K., Sheng, O.R.L. & Tam, K.Y. (1999). Examining the technology acceptance model using
physician acceptance of telemedicine technology. Journal of Management Information Systems, 16(2), 91-112.
Hu, P.J., Clark, T.H.K. & Ma, W.W. (2002). Examining technology acceptance by school teachers: A longitudinal
study. Information & Management, 41(2), 227-241. http://dx.doi.org/10.1016/S0378-7206(03)00050-8
Huang, L.J., Lu, M.T. & Wong, B.K. (2003). The impact of power distance on email acceptance: Evidence from the
PRC. Journal of Computer Information Systems, 44(1), 93-101.
Igbaria, M., Parasuraman, S. & Baroudi, J.J. (1996). A Motivational Model of Microcomputer Usage. Journal of
Management Information Systems, 13(1), 127-143.
Junco, R. Heibergert, G. & Loken, E. (2011). The effect or Twitter on college student engagement and grades.
Journal of Computer Assisted Learning. 27, 119-132. http://dx.doi.org/10.1111/j.1365-2729.2010.00387.x
Kaiser, H.F. (1970). A second-generation Little Jiffy. Psychometrika, 35, 401-415.
http://dx.doi.org/10.1007/BF02291817
Kaiser, H.F. (1974). Little Jiffy, Mark IV. Educational and Psychological Measurement, 34, 111-117.
http://dx.doi.org/10.1177/001316447403400115
Karahanna, E. & Limayem, M. (2000). E-mail and V-mail usage: Generalizing across technologies. Journal of
Organizational Computing and Electronic Commerce, 10(1), 49-66.
http://dx.doi.org/10.1207/S15327744JOCE100103
Karahanna, E. & Straub, D.W. (1999). The psychological origins of perceived usefulness and ease-of-use”.
Information & Management, 35(4), 237-250. http://dx.doi.org/10.1016/S0378-7206(98)00096-2
Kennedy-Clark, S. (2011). Pre-service teachers’ perspectives on using scenario-based virtual worlds in science
education. Computers & Education, 57, 2224-2235. http://dx.doi.org/10.1016/j.compedu.2011.05.015
Lee, M.J.W. & McLoughlin, C. (2008). Harnessing the affordances of Web 2.0 and social software tools: can we
finally make “student-centered” learning a reality?. Paper presented at the World Conference on Educational
Multimedia, Hypermedia and Telecommunications, Vienna, Austria.
Lee, S.W. & Tsai, C. (2011). Students’ perceptions of collaboration, self-regulated learning, and information
seeking in the context of internet-based learning and traditional learning. Computers in Human Behavior, 27(2),
905-914. http://dx.doi.org/10.1016/j.chb.2010.11.016Legris, P., Ingham, J. & Collerette, P. (2003). Why do people use information technology? A critical review of the
technology acceptance model. Information & Management, 40, 191-204. http://dx.doi.org/10.1016/S0378-
7206(01)00143-4
Lin, J.C.C. & Lu, H. (2002). Towards an understanding of behavioral intention to use a web site. International
Journal of Information Management, 20, 197-208.
Lockyer, L. & Patterson, J. (2008). Integrating social networking technologies in education: a case study of a
formal learning environment. Proceedings of 8th IEEE international conference on advanced learning
technologies, Santander, Spain, 529-533.
Mathieson, K. (1991). Predicting user intentions: Comparing the technology acceptance model with the theory
of planned behaviour. Information Systems Research, 2(3), 173.191. http://dx.doi.org/10.1287/isre.2.3.173
Mazman, S.G. & Usluel, Y.K. (2010). Modeling educational usage of Facebook. Computers & Education, 55(2),
444-453. http://dx.doi.org/10.1016/j.compedu.2010.02.008
Miniard, P.W. & Cohen, J.B. (1979). Isolating attitudinal and normative influences in behavioral intention
models. Journal of Marketing Research, 16, 102-110. http://dx.doi.org/10.2307/3150881
Moon, J.W. & Kim, Y.G. (2001). Extending the TAM for a World-Wide-Web context. Information & Management,
38(4), 217-230. http://dx.doi.org/10.1016/S0378-7206(00)00061-6
Moore, G.C. & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an
information technology innovation. Information Systems Research, 2(3), 192-222.
http://dx.doi.org/10.1287/isre.2.3.192
Morris, M.G. & Dillon, A. (1997). How user perceptions influence software use. IEEE Software, 14(4), 58-65.
http://dx.doi.org/10.1109/52.595956
Muñoz-Leiva, F. (2008). La adopción de una innovación basada en la Web. Análisis y modelización de los
mecanismos generadores de confianza. Tesis doctoral. Department of Marketing and Market Research in the
University of Granada. Retrieved from. http://webcim.ugr.es/banca_e
Ngai, E.W.T., Poon, J.K.L. & Chan, Y.H.C. (2007). Empirical examination of adoption of WebCT using TAM.
Computers & Education, 48(2), 250-267. http://dx.doi.org/10.1016/j.compedu.2004.11.007
Nunnally, Y.J. (1978). Psychometric theory. New York: McGraw Hill.
O’cass, A. & Fenech, T. (2003). Web retailing adoption: Exploring the nature of Internet users Web retailing
behaviour. Journal of Retailing and Consumer Services, 10, 81-94. http://dx.doi.org/10.1016/S0969-
6989(02)00004-8
Parameswaran, M. & Whinston, A.B. (2007). Social Computing: An Overview. Communications of the
Association for Information Systems, 19(37).
Piaget's, J (1955). De la logique de l´enfant à la logique de l´adolescent. Essai sur la construction des structures
opératories (con Bärbel Inhelder). [De la lógica del niño a la lógica el adolescente. Buenos Aires: Paidós, 1972].
Ramayah, T., Jantan, M. & Ismail, N. (2003). Impact of intrinsic and extrinsic motivation on Internet usage in
Malaysia. Proceedings in the Third International Conference on Electronic Commerce Engineering.
Roschelle, J.M., Pea, R.D., Hoadley, C.M., Gordin, D.N. & Means, B.M. (2000). Changing how and what children
learn in school with computer-based technology. Children and Computer Technology, 10(2), 76-101.
Sahin, I. & Shelley, M. (2008). Considering students’ perceptions: The distance education student satisfaction
model. Educational Technology & Society, 11(3), 216-223.
Sanchez Arteaga, R., & Duarte Hueros, A. (2010). Motivational factors that influence the acceptance of moodle
using TAM. Computers in human behavior, 26(6), 1632-1640. http://dx.doi.org/10.1016/j.chb.2010.06.011
Sánchez-Franco, M.J. & Roldán, J.L. (2005). Web acceptance and usage model: A comparison between goaldirected
and experiential web users. Internet Research-Electronic Networking Applications and Policy, 15(1),
21-48. http://dx.doi.org/10.1108/10662240510577059
Schroeder, A., Minocha, S. & Scheidert, C. (2010). The strengths, weaknesses, opportunities and threats of using
social software in higher and further education teaching and learning. Journal of Computer Assisted Learning.
26, 159-174. http://dx.doi.org/10.1111/j.1365-2729.2010.00347.x
Selim, H.M. (2003). An empirical investigation of student acceptance of course websites. Computers and
Education, 40, 343-360. http://dx.doi.org/10.1016/S0360-1315(02)00142-2Shen, J. & Eder, L.B. (2009). Intentions to use virtual worlds for education. Journal of information system
education, 20(2), 225-233.
Sun, Pei-C., Tsai, R.J., Finger, G. & Chen, Y-Y. (2008). Dowming Yeh, What drives a successful e-Learning?. An
empirical investigation of the critical factors influencing learner satisfaction. Computers & Education, 50(4),
1183-1202.
Taylor, S. & Todd, P.A. (1995). Understanding information technology usage: A test of competing models.
Information Systems Research, 6(2), 144-176. http://dx.doi.org/10.1287/isre.6.2.144
Trombley, K.B. & Lee, D. (2002). Web-based learning in corporations: Who is using it and why, who is not and
why not? Journal of Educational Media, 27(3).
Twitter (2010). Envolving Econsystem. Retrieved from. http://blog.Twitter.com/2010/09/evolvingecosystem.
html
Ugarte, D. (2007). El poder de las redes sociales. Retrieved from. http://rusc.uoc.edurusc, 5(2) (2008).
University Coordination Council (2005). Spanish Ministry of Education from.
http://www.boe.es/boe/dias/2005/03/15/pdfs/A09068-09069.pdf
Uzunboylu, H., Bicen, H. & Cavus, N. (2011). The efficient virtual learning environment: A case study of web 2.0
tools and Windows live spaces. Computers & Educations, 56, 720-726.
http://dx.doi.org/10.1016/j.compedu.2010.10.014
Van der Heijden, H. (2003). Factors influencing the usage of websites: The case of a generic portal in The
Netherlands. Information & Management, 40. http://dx.doi.org/10.1016/S0378-7206(02)00079-4
Van der Heijden, H., Verhagen, T. & Creemers, M. (2003). Understanding online purchase intentions:
Contributions from technology and trust perspectives. European Journal of Information Systems, 12, 41-48.
http://dx.doi.org/10.1057/palgrave.ejis.3000445
Van Raaij, E.M., & Schepers, J.J.L. (2008). The acceptance and use of a virtual learning environment in China.
Computers & Education, 50(3), 838-852. http://dx.doi.org/10.1016/j.compedu.2006.09.001
Venkatesh, V. & Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions.
Decision Sciences, 39(2), 273. http://dx.doi.org/10.1111/j.1540-5915.2008.00192.x
Venkatesh, V. & Davis, F.D. (2000). A theoretical extension of the technology acceptance model: Four
longitudinal field studies. Management Science, 46(2), 186. http://dx.doi.org/10.1287/mnsc.46.2.186.11926
Verhoeven, J.C.; Heerwegh, D. & De Wit, K. (2010). Information and communication technologies in the life of
university freshmen: An analysis of change. Computers & Educations, 55, 53-66.
http://dx.doi.org/10.1016/j.compedu.2009.12.002
Warshaw, P.R. (1980). A new model for predicting behavioral intentions: An alternative to fishbein. Journal of
Marketing Research, 17, 153-172. http://dx.doi.org/10.2307/3150927
Yang, C. & Chang, Y.S. (2011). Assessing the effects of interactive blogging on student attitudes towards peer
interaction, learning motivation, and academic achievements. Journal of Computer Assisted Learning. Retrieved
from http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2729.2011.00423.x/abst...
Zhang, D. & Zhou, L. (2003). Enhancing e-learning with interactive multimedia. Information Resources
Management Journal, 16(4), 1. http://dx.doi.org/10.4018/irmj.2003100101

Thank you for copying data from http://www.arastirmax.com