You are here

Maddenin Tanecikli Yapısının Anlaşılması Üzerine Analoji ve Deneylerin Etkisi

The Effects Of Experiments and Analogy On The Understanding Of The Particulate Nature Of Matter

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
The purpose of this research is to determine understanding levels of science students related to the particulate nature of matter via experiments supported with analogies. This research designed as one group pretest- posttest design of experimental method. The sample of this study consists of 96 students from science teacher education program at first-year undergraduates an Educational Faculty during the 2013-2014 academic year. In the study, The Particulate Nature of Matter Tests (PNMT1,2,3,4) were used for the data collection. Tests were obtained from open-ended questions and for validity it was applied to expert views. It was implemented PNMTs as pretest before the experiment and posttest after the experiment every week to students at implementation process. Each experiment was supported with the example of analogies. Student evaluation is done by giving points to the drawing. The average of the scores obtained and student’s drawings for each evaluation PNMT was performed considering. According to the results, it was determined that students’ deficiencies related to the particulate nature of matter was reduced from before the experiments to after the experiments.
Abstract (Original Language): 
Bu araştırmanın amacı fen bilgisi öğretmenliği programında öğrenim gören öğrencilerin maddenin tanecikli yapısını anlama düzeylerini analoji destekli deneylere dayalı olarak tespit etmektir. Araştırma, deneysel araştırma modellerinden tek grup ön test-son test desenine göre tasarlanmıştır. Araştırmanın örneklemini, 2013-2014 eğitim-öğretim yılında bir Eğitim Fakültesi Fen Bilgisi Öğretmenliği Programında öğrenim gören toplam 96 öğrenci oluşturmaktadır. Araştırmada veri toplama aracı olarak Maddenin Tanecikli Yapısı Testleri (MTYT1,2,3,4) kullanılmıştır. Testler açık uçlu sorulardan oluşturulmuş ve testlerin geçerliği için uzman görüşüne başvurulmuştur. Uygulama aşamasında öğrencilere her hafta yapılacak deneyle ilgili deneyden önce MTYT ön test olarak, deney yapıldıktan sonra aynı test son test olarak tekrar uygulanmıştır. Her bir deney analoji örnekleri ile desteklenmiştir. Verilerin analizinde her bir test için elde edilen puanların ortalamaları ve öğrenci çizimleri dikkate alınarak değerlendirme yapılmıştır. Araştırmadan elde edilen sonuçlara göre öğrencilerin deneylerden önce maddenin tanecikli yapısıyla ilgili anlamalarındaki eksikliklerin deneylerden sonra azaldığı belirlenmiştir.
1183
1198

REFERENCES

References: 

Adadan, E. (2013). Using multiple representations to promote grade 11 students’ scientific understanding
of the particle theory of matter. Research in Science Education, 43 (3), 1079-1105.
Adadan, E. (2014). Investigating the influence of pre-service chemistry teachers’ understanding of
the particle nature of matter on their conceptual understanding of solution chemistry. Chemistry
Education Research and Practice, 15 (2), 219-238.
Akaygun, S., & Jones, L. L. (2013). Dynamic visualizations: Tools for understanding the particulate
nature of matter. In Concepts of matter in science education (pp. 281-300). Springer Netherlands.
1194 Mustafa ALYAR, Kemal DOYMUŞ...
Mayıs 2016 Cilt:24 No:3 Kastamonu Eğitim Dergisi
Aksoy, G. (2010). Öğrencilerin fen ve teknoloji dersindeki deneyleri anlamalarına okuma-yazmauygulama
ve birlikte öğrenme yöntemlerinin etkileri. Yayımlanmamış doktora tezi, Atatürk
Üniversitesi, Eğitim Bilimleri Enstitüsü, Erzurum.
Aladejana, F., & Aderibigbe, O. (2007). Science laboratory environment and academic performance.
Journal of science Education and Technology, 16 (6), 500-506.
Ardac, D., & Akaygun, S. (2004). Effectiveness of multimedia‐based instruction that emphasizes
molecular representations on students’ understanding of chemical change. Journal of research
in science teaching, 41 (4), 317-337.
Aydeniz, M., & Kotowski, E. L. (2012). What do middle and high school students know about
the particulate nature of matter after instruction? Implications for practice. School Science and
Mathematics, 112 (2), 59-65.
Barthlow, M. J., & Watson, S. B. (2014). The effectiveness of process‐oriented guided inquiry learning to reduce
alternative conceptions in secondary chemistry. School Science and Mathematics, 114 (5), 246-255.
Becker, N., Rasmussen, C., Sweeney, G., Wawro, M., Towns, M., & Cole, R. (2013). Reasoning
using particulate nature of matter: An example of a sociochemical norm in a university-level
physical chemistry class. Chemistry Education Research and Practice, 14 (1), 81-94.
Burrows, N. L., & Mooring, S. R. (2015). Using concept mapping to uncover students’ knowledge structures
of chemical bonding concepts. Chemistry Education Research and Practice, 16 (1), 53-66.
Chiu, J. L., DeJaegher, C. J., & Chao, J. (2015). The effects of augmented virtual science laboratories
on middle school students’ understanding of gas properties. Computers & Education, 85, 59-73.
Çalik, M., Turan, B., & Coll, R. K. (2014). A cross-age study of elementary student teachers’scientific
habits of mind concerning socioscientific issues. International Journal of Science and
Mathematics Education, 12 (6), 1315-1340.
Doymuş, K., & Şimşek, Ü. (2007). Kimyasal bağların öğretilmesinde jigsaw tekniğinin etkisi ve bu
teknik hakkında öğrenci görüşleri. Milli Eğitim Dergisi, 173 (1), 231-243.
Duncan, R. G., & Rivet, A. E. (2013). Science learning progressions. Science, 339 (6118), 396-397.
Eilks, I., Witteck, T., & Pietzner, V. (2012). The role and potential dangers of visualisation when learning
about sub-microscopic explanations in chemistry education. CEPS Journal, 2 (1), 125-145.
Fong, H. F., & Kwen, B. H. (2007). Exploring the effectiveness of cooperative learning as a teaching
and learning strategy in the physics classroom. Proceedings of the redesigning pedagogy:
Culture, Knowledge, and Understanding, Singapura, 28-30.
Harrison A.G. and Treagust D.F., (2002), The particulate nature of matter: challenges in understanding
the submicroscopic world, In J. K. Gilbert, O. De Jong, R. Justi, D. F. Treagust and J. H.
Van Driel (Eds.), Chemical education: towards research-based practice (pp. 213-234), Dordrecht:
Kluwer Academic Publishers.
Johnstone, A.H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal
of Computer Assisted Learning, 7, 75-83.
Kabapınar, Y. (2007). İlköğretimde hayat bilgisi ve sosyal bilgiler öğretimi (1. Baskı). Ankara: Maya
Akademi
Kahveci, A. (2013). Diagnostic assessment of student understanding of the particulate nature of matter:
decades of research. In Concepts of Matter in Science Education (pp. 249-278). Springer Netherlands.
Karacop, A., & Doymus, K. (2013). Effects of jigsaw cooperative learning and animation techniques
on students’ understanding of chemical bonding and their conceptions of the particulate
nature of matter. Journal of Science Education and Technology, 22 (2), 186-203.
Karaçöp, A. (2010). Öğrencilerin elektrokimya ve kimyasal bağlar ünitelerindeki konuları
anlamalarına animasyon ve jigsaw tekniklerinin etkileri. Yayınlanmamış Doktora Tezi, Atatürk
Maddenin Tanecikli Yapısının Anlaşılması Üzerine Analoji... 1195
May 2016 Vol:24 No:3 Kastamonu Education Journal
Üniversitesi, Fen Bilimleri Enstitüsü, Erzurum.
Karasar, N. (2014). Bilimsel Araştırma Yöntemi. (27. Baskı), Ankara: Nobel Yayın Dağıtım.
Luxford, C. J., & Bretz, S. L. (2014). Development of the Bonding Representations Inventory to
identify student misconceptions about covalent and ionic bonding representations. Journal of
Chemical Education, 91 (3), 312-320.
McKee, E., Williamson, V. M., & Ruebush, L. E. (2007). Effects of a demonstration laboratory on
student learning. Journal of Science education and Technology, 16 (5), 395-400.
Meijer, M. R. (2011). Macro-meso-micro thinking with structure-property relations for chemistry
education: An explorative design-based study. Utrecht: Freudenthal Institute for Science and
Mathematics Education, Faculty of Science, Utrecht University / FIsme Scientific Library (formerly
published as CD-β Scientific Library), 65.
Mutlu, M., & Aydoğdu, M. (2003). Fen bilgisi eğitiminde Kolb’un yaşantısal öğrenme yaklaşımı.
Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 13(13), 15-29.
Naah, B. M., & Sanger, M. J. (2012). Student misconceptions in writing balanced equations for dissolving
ionic compounds in water. Chemistry Education Research and Practice, 13 (3), 186-194.
Noyanalpan, N. (1996). İlköğretim okullarında fen öğretimi ve sorunları. Ankara: Türk Eğitim Derneği
Yayınları.
Okumuş, S., Öztürk, B., Doymuş, K. & Alyar, M. (2014). Maddenin tanecikli yapısının mikro ve
makro boyutta anlaşılmasının sağlanması [Aiding comprehension of the particulate of matter
at the micro and macro levels]. Eğitim Bilimleri Araştırmaları Dergisi - Journal of Educational
Sciences Research, 4 (1), 349-368. http://ebad-jesr.com/
Özmen, H. (2004). Fen öğretiminde öğrenme teorileri ve teknoloji destekli yapılandırmacı (constructivist)
öğrenme. The Turkish Online Journal of Educational Technology, 3 (1), 100-111.
Raviolo, A. (2001). Assessing students’ conceptual understanding of solubility equilibrium. Journal
of Chemical Education, 78 (5), 629-631.
Saari, H., & Viiri, J. (2003). A research‐based teaching sequence for teaching the concept of modelling
to seventh‐grade students. International Journal of Science Education, 25 (11), 1333-1352.
Şengören, S. K. (2006). Optik dersi ışıkta girişim ve kırınım konularının etkinlik temelli öğretimi:
İşbirlikli öğrenme yönteminin etkilerinin araştırılması. Yayınlanmamış doktora tezi, Dokuz Eylül
üniversitesi, Eğitim Bilimleri Enstitüsü, İzmir.
Şimşek, Ü., Doymuş, K., Doğan, A., & Karaçöp, A. (2009). İşbirlikli öğrenmenin iki farklı tekniğinin
öğrencilerin kimyasal denge konusundaki akademik başarılarına etkisi. Gazi Eğitim Fakültesi
Dergisi, 29 (3).
Taber, K. S. (2013). Revisiting the chemistry triplet: drawing upon the nature of chemical knowledge
and the psychology of learning to inform chemistry education. Chemistry Education Research
and Practice, 14 (2), 156-168.
Taber, K. S., Tsaparlis, G., & Nakiboğlu, C. (2012). Student conceptions of ionic bonding: Patterns of thinking
across three European contexts. International Journal of Science Education, 34 (18), 2843-2873.
Tanel, Z. (2006). Manyetizma konularının lisans düzeyindeki öğretiminde geleneksel öğretim yöntemi
ile işbirlikli öğrenme yönteminin etkilerinin karşılaştırılması. Yayınlanmamış doktora tezi,
Dokuz Eylül Üniversitesi Eğitim Bilimleri Enstitüsü, İzmir.
Tsitsipis, G., Stamovlasis, D., & Papageorgiou, G. (2012). A probabilistic model for students’errors
and misconceptions on the structure of matter in relation to three cognitive variables. International
Journal of Science and Mathematics Education, 10 (4), 777-802.
1196 Mustafa ALYAR, Kemal DOYMUŞ...
Mayıs 2016 Cilt:24 No:3 Kastamonu Eğitim Dergisi
Wei, S., Liu, X., Wang, Z., & Wang, X. (2012). Using Rasch measurement to develop a computer
modeling-based instrument to assess students’ conceptual understanding of matter. Journal of
Chemical Education, 89 (3), 335-345.
Williamson, V. M., Lane, S. M., Gilbreath, T., Tasker, R., Ashkenazi, G., Williamson, K. C., & Macfarlane,
R. D. (2012). The effect of viewing order of macroscopic and particulate visualizations
on students’ particulate explanations. Journal of Chemical Education, 89 (8), 979-987.
Yeziesrki E.J. & Birk J.P. (2006) Misconceptions about the particulate nature of matter. Using animations
to close the gender gap. Journal of Chemical Education, 83 (6), 954-960.
Zahara A. & Md. Anowar H. (2010). A comparison of cooperative learning and conventional teaching
on students’ achievement in secondary mathematics. Procedia-Social and Behavioral
Sciences Journal, 9, 53–62.

Thank you for copying data from http://www.arastirmax.com