You are here

Characterizations and bounds for weighted sums of eigenvalues of normal and Hermitian matrices

Journal Name:

Publication Year:

Abstract (2. Language): 
Let A ∈ Cn×n be normal with eigenvalues 1, . . . , n, and let t1, . . . , tn ∈ C. It is well-known that max ∈Sn |t1(1) + · · · + tn(n)| = max n|t1u∗1Au1 + · · · + tnu∗n Aun| {u1, . . . , un} ⊂o Cno. Here Sn denotes the symmetric group of order n, and ⊂o means “is an orthonormal subset of . . . ”. If A is Hermitian and 1 ≥ · · · ≥ n, and if t1, . . . , tn ∈ R satisfy t1 ≥ · · · ≥ tn, then t11 + · · · + tnn = maxnt1u∗1Au1 + · · · + tnu∗n Aun | {u1, . . . , un} ⊂o Cno and tn1 + · · · + t1n = min nt1u∗1Au1 + · · · + tnu∗n Aun | {u1, . . . , un} ⊂o Cno. We present bounds for the left-hand sides of all these equations by suitable choices of u1, . . . , un.
FULL TEXT (PDF): 
329-346

REFERENCES

References: 

[1] G. Hardy, J. E. Littlewood and G. P´olya, Inequalities. 2nd ed., Cam-
brigde U. Pr., 1952.
[2] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge U. Pr., 1985.
[3] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cam-
brigde U. Pr., 1991.
[4] C. R. Johnson, R. Kumar and H. Wolkowicz, Lower bounds for the spread
of a matrix. Linear Algebra Appl. 71 (1983), 161–173.
346 Jorma K. Merikoski and Ravinder Kumar
[5] C. K. Li, T.-Y. Tam and N.-K. Tsing, The generalized spectral radius,
numerical radius and spectral norm. Linear and Multilinear Algebra 16
(1984), 215–237.
[6] M. Marcus, B. N. Moyls and I. Filippenko, Normality and the higher
numerical range. Canad. J. Math. 30 (1978), 419–430.
[7] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its
Applications. Acad. Pr., 1979.
[8] J. K. Merikoski and R. Kumar, Characterizations and lower bounds for
the spread of a normal matrix. Linear Algebra Appl. 364 (2003), 13–31.
[9] L. Mirsky, Inequalities for normal and Hermitian matrices. Duke Math.
J. 24 (1957), 591–599.
[10] W. V. Parker, Sets of complex numbers associated with a matrix. Duke
Math. J. 15 (1948), 711–715.
[11] H. Wolkowicz and G. P. H. Styan, Bounds for eigenvalues using traces.
Linear Algebra Appl. 29 (1980), 471–506.

Thank you for copying data from http://www.arastirmax.com