You are here

Characterizations and bounds for weighted sums of eigenvalues of normal and Hermitian matrices

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
Let A ∈ Cn×n be normal with eigenvalues 1, . . . , n, and let t1, . . . , tn ∈ C. It is well-known that max ∈Sn |t1(1) + · · · + tn(n)| = max n|t1u∗1Au1 + · · · + tnu∗n Aun| {u1, . . . , un} ⊂o Cno. Here Sn denotes the symmetric group of order n, and ⊂o means “is an orthonormal subset of . . . ”. If A is Hermitian and 1 ≥ · · · ≥ n, and if t1, . . . , tn ∈ R satisfy t1 ≥ · · · ≥ tn, then t11 + · · · + tnn = maxnt1u∗1Au1 + · · · + tnu∗n Aun | {u1, . . . , un} ⊂o Cno and tn1 + · · · + t1n = min nt1u∗1Au1 + · · · + tnu∗n Aun | {u1, . . . , un} ⊂o Cno. We present bounds for the left-hand sides of all these equations by suitable choices of u1, . . . , un.
FULL TEXT (PDF): 
329-346