You are here

Denizel Fitoplanktonun Ekolojik Önemi ve Küresel İklim Değişikliğindeki Rolü

Importance of Marine Phytoplankton in Ecology and Their Role in the Global Climate Change

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
The aim of this study is to investigate ecological importance of plant plankton (phytoplankton) and their role in the climate change. Carbon production by phytoplankton, which is at the base of the marine food chain, constitutes half of the global primary production. Phytoplankton produces half of the oxygen in the earth as well. These single celled organisms also play a role in the global climate change. It was suggested that phytoplankton might mitigate global warming with two different mechanisms. In the first one, phytoplankton absorbs carbon dioxide from the atmosphere and converts it into organic carbon and with dead organisms carbon is transported to the sea bottom. Thus, atmospheric carbon dioxide and greenhouse effect is reduced. Second mechanism is realized with the dimethylsulfide gas released from some widespread phytoplankton groups in the oceans. This gas is oxidized into sulphate aerosols in the atmosphere and functions as cloud condensation nuclei. Since the formation of clouds impedes some part of solar radiation to reach the earth surface, it was suggested that this gas will cause a cooling effect. When it is considered that phytoplankton forms only 0.2% of plant mass in the biosphere but is the direct or indirect source of food for all creatures in the sea and can affect one of the major problems of our century, global warming, the importance of these organisms in the ecosystem is understood.
Abstract (Original Language): 
Bu derlemenin amacı bitkisel planktonun ekolojik önemini ve iklim değişikliğindeki rolünü incelemektir. Denizlerde besin zincirinin en alt halkasını oluşturan fitoplanktonun karbon üretimi dünya birincil üretiminin yarısını karşılamaktadır. Fitoplankton yeryüzündeki oksijenin de yarısını üretmektedir. Bu tek hücreli organizmalar küresel iklim değişikliğinde de rol oynamaktadır. İki farklı mekanizma ile fitoplanktonun küresel ısınmayı azaltabileceği önerilmiştir. Birincisinde bu fitoplankton atmosferden karbondioksiti alıp organik karbona çevirir ve ölen organizmalarla deniz tabanına gönderilir. Dolayısıyla atmosferdeki karbondioksit miktarı azalarak sera etkisi azaltılmış olur. İkinci mekanizma okyanuslarda yaygın olarak görülen bazı fitoplankton gruplarından çıkan dimetilsülfat gazı ile gerçekleşir. Bu gaz atmosferde sülfat aerosollerine yükseltgenerek bulut yoğunlaşma çekirdeği olarak görev yapar. Bulut oluşumu güneş ışınlarının yeryüzüne ulaşmasını engelleyeceği için bu gazın küresel bir soğumaya yol açabileceği belirtilmiştir. Biyosferdeki bitki kütlesinin sadece %0,2’sine karşılık gelen fakat tüm deniz canlılarının direk veya dolaylı olarak besin kaynağı olan fitoplanktonun çağın en büyük sorunlarından biri olan küresel ısınmayı etkileyebildiği düşünüldüğünde bu organizmaların ekosistemdeki yeri ve önemi daha iyi anlaşılmaktadır.
285-293

REFERENCES

References: 

Alfred Wegener Institute for Polar and Marine Research (10 Haziran 2007). Iron fertilization of oceans: A real option for carbon dioxide reduction?. Science Daily,. İnternetten 15 Temmuz 2009’da elde edilmiştir .
Armstrong R.A., Lee C., Hedges J.I., Honjo S., ve Wakeham S.G. (2001). A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep Sea Research Part II: Topical Studies in Oceanography, 49, 219-236.
Becquevort, S., Lancelot, C., and Schoemann, V. (2007). The role of iron in the bacterial degradation of organic matter derived from Phaeocystis Antarctica. Biogeochemistry, 83, 119–135.
Boyd, P.W., Watson, A.J., Law, C.S., Abraham, E.R., Trull, T., et al. (2000). A mesoscale phytoplankton shift bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 407, 695-702.
Boyd, P.W., Jickells, T., Law, C.S., Blain, S., Boyle, et al. (2007). Mesoscale Iron Enrichment Experiments 1993-2005: Synthesis and Future Directions. Science, 315, 612.
Charlson, R. J., Lovelock, J. E., Andreae, M. O., ve Warren, S. G. (1987). Oceanic phytoplanton, atmospheric sulphur, cloud albedo and climate. Nature, 326, 655-661.
Coale, K.H., Johnson, K.S., Chavez, F.P., Buesseler, K.O., Barber, R.T., et al. (2004). Southern Ocean Iron Enrichment Experiment: Carbon Cycling in High- and Low- Si Waters. Science, 304, 408-414.
Doney S.C. ve Schimel, D.S. (2007). Carbon and climate system coupling on timescales from the Precambrian to the Anthropocene. Annual Review of Environment and Resources, 32, 31–66.
Duce, R.A. ve Tindale, N.W. (1991). Chemistry and biology of iron and other trace metals. Limnology and Oceonography, 36, 1715-1726.
Ducklow H.W., Steinberg D.K., ve Buesseler K.O. (2001). Upper ocean carbon export and the biological pump. Oceanography, 14, 50-58.Field, C.B, Behrenfeld M.J, Randerson J.T, ve Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281, 237-240.
Geider, R., Delucia, E.H., Falkowski, P.G., Finzi, A.C., Grime, J.P., et al. (2001). Primary productivity of the planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Global Change Biology, 7, 849-882.
Houghton J.T., Meiro Filho L.G., Callander B.A., Haris N., Kattenburg A., et al. (1996). Climate change 1995, the science of climate change. Cambridge University Press.
Intergovernmental Panel on Climate Change, IPCC, (2007). Summary for Policymakers. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, et al. (Eds.). Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press.
Jickells, T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., et al. (2005). Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308, 67-71.
Kapur, S., Saydam, C., Akça, E., Çavuşgil, V.S., Karaman, C., et al. (2000). Carbonate pools in soils of the Mediterranean: A case study from Anatolia. In Lal, R., Kimble, J.M., Eswaran, H., and Stewart, B.A. (Eds), Globle Climate Change and Pedogenic Carbonates, (ss.188-212). Lewis Publishers.
Keller M.D., Bellows, W.K., ve Guillard, R.R.L. (1989). Dimethysulfide production in marine phytoplankton. In Saltzman E.S., and Cooper W.J. (Eds.). Biogenic sulfur in the environment (ss. 167-182). Washington, DC: Amererican Chemical Society.
Kyoto Protocol (14 Ocak 2009). Status of ratification. United Nations framework convention on climate change. İnternet’ten 29 Haziran 2009’da elde edilmiştir .
Landry, M.R., Ondrusek, M.E., Tanner, S.J., Brown, S.L., Constantinou, J., et al. (2000). Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). I. Microplankton community abundance and biomass. Marine Ecology Progress Series, 201, 27-42.
Laws, E.A., Falkowski, P., Carpenter, E.A., ve Ducklow, H. (2000). Temperature-dependence of the f-ratio. Global Biogeochemical Cycles, 14, 1231-1246.
Longhurst A., Sathyendranath, S., Platt, T., & Caverhill C. (1995). An estimate of global primary production in the ocean from satellite radiometer data. Journal of plankton Research, 17, 1245-1271.
Lovelock, J. (2007). The revenge of Gaia: Why the earth is fighting back and how we can still save humanity. Penguin Books Ltd.
Martin J. H. (1990). Glacial-interglacial CO2 change: The iron hypothesis. Paleoceanography, 5, 1–13.
Martin, J.H., Coale, K.H., Johnson, K.S., Fitzwater, S.E., Gordon, R.M., et al. (1994). Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature, 371, 123-128.
Martin, J.H., Gordon, R.M., ve Fitzwater, S.E. (1991). Iron limitation? The case for iron. Limnology and Oceanography, 36, 1793-1802.
Roach J. (7 Haziran 2004). Source of half earth's oxygen gets little credit. National Geographic News. İnternetten 30 Haziran 2009’da elde edilmiştir . Sigman D.M. ve Boyle E.A. (2000). Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859-869.
Türkiye Teknoloji Geliştirme Vakfı, TTGV (2006). Montreal protokolü.. İnternetten 10 Temmuz 2009’da elde edilmiştir .
Wikipedia (24 Haziran 2009). Iron fertilization. İnternetten 14 Temmuz 2009’da elde edilmiştir .
Watson, A.J. (1997). Volcanic iron, CO2, ocean productivity and climate. Nature, 385, 587–588.

Thank you for copying data from http://www.arastirmax.com