You are here

HAREKETLİ HARMONİK YÜKLER ETKİSİNDEKİ VİSKOELASTİK KİRİŞLERİN TİTREŞİMİ

VIBRATION OF VISCOELASTIC BEAMS SUBJECTED TO MOVING HARMONIC LOADS

Journal Name:

Publication Year:

Abstract (2. Language): 
The transverse vibration of a beam with intermediate point constraints subjected to a moving harmonic load is analyzed within the framework of the Bernoulli-Euler beam theory. The Lagrange equations are used for examining the dynamic response of beams subjected to the moving harmonic load. The constraint conditions of supports are taken into account by using Lagrange multipliers. In the study, for applying the Lagrange equations, trial function denoting the deflection of the beam is expressed in the polynomial form. By using the Lagrange equations, the problem is reduced to the solution of a system of algebraic equations. The system of algebraic equations is solved by using the direct time integration method of Newmark [8]. Results of numerical simulations are presented for various combinations of constant axial velocity, excitation frequency, number of point supports and various values of damping coefficient. Keywords: Forced vibrations of beam, free vibrations of beam, moving harmonic load
Abstract (Original Language): 
Bu çalışmada hareketli harmonik yükler etkisindeki kirişlerin enine titreşimleri Bernoulli-Euler kiriş teorisi çerçevesinde incelenmiştir. Problemin çözümü için Lagrange denklemleri kullanılmıştır. Problemde mesnet şartları Lagrange çarpanları kullanılarak sağlanmıştır. Çalışmada, Lagrange denklemlerinin uygulanması için kirişin yerdeğiştirmelerini ifade eden çözüm fonksiyonunun oluşturulmasında polinomlar kullanılmıştır. Lagrange denklemleri kullanılarak problem cebrik denklem sisteminin çözümüne indirgenmiştir. Bu denklem sistemi Newmark [8] yöntemi kullanılarak çözülmüştür. Problemde kirişin yerdeğiştirmeleri, hareketli harmonik yükün frekansı ve hızı, çeşitli sönüm oranları ve açıklık sayısı için sayısal olarak incelenmiştir.
116-128

REFERENCES

References: 

[1] Timoshenko S., Young D. H. “Vibration Problems in Engineering”, Third edition, Van
Nostrand Company, New York, 324-365, 1955.
[2] Fryba L., “Vibration of solids and Structures Under Moving Loads”, Noordhoff
International Publishing, Groningen, 13-43, 1972.
[3] Lee H. P., “Dynamic response of a beam with intermediate point constraints subject to a
moving load” Journal of Sound and Vibration, 171, 361-368, 1994.
[4] Abu-Hilal M., Mohsen M., “Vibration of beams with general boundary conditions due to
a moving harmonic load”, Journal of Sound and Vibartion, 232, 703-717, 2000.
[5] Zheng D. Y., Cheung Y. K., Au F. T. K., Cheng Y. S., “Vibration of multi-span nonuniform beams under moving loads by using modified beam vibration functions”, Journal
of Sound and Vibration, 212, 455-467, 1998.
[6] Dugush Y. A., Eisenberg M., “Vibrations of non-uniform continuous beams under
moving loads”, Journal of Sound and Vibration, 254, 911-926, 2002.
[7] Zhu X. Q, Law S. S., “Precise time-step integration for the dynamic response of a
continuous beam under moving loads”, Journal of Sound and Vibration, 240, 962-970,
2000.
[8] Newmark N. M., “A method of computation for structural dynamics”, ASCE Eng. Mech.
Div., 85, 67-94, 1959.

Thank you for copying data from http://www.arastirmax.com