You are here

WINKLER-PASTERNAK ZEMİNE OTURAN KAYMA DEFORMASYONLU DİKDÖRTGEN PLAKLARIN STATİK HESABI

STATIC ANALYSIS OF SHEAR DEFORMABLE RECTANGULAR PLATES ON WINKLER-PASTERNAK FOUNDATION

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Static analysis of shear deformable plates resting on two-parameter foundations is presented by the method of discrete singular convolution (DSC). The influence of foundation parameters on the deflections of the plate has been investigated. Numerical studies are performed and the DSC results are compared well with other analytical solutions and some numerical results.
Abstract (Original Language): 
İki parametreli zemine oturan kayma deformasyonlu plakların statik analizi için ayrık tekil konvolüsyon yöntemi sunulmuştur. Zemin parametrelerinin deformasyon üzerine etkisi incelenmiştir. Sayısal uygulama yapılmış ve elde edilen sonuçlar diğer analitik ve bazı sayısal çözüm yöntemlerinin verdiği sonuçlar ile karşılaştırılmıştır.

REFERENCES

References: 

[1] Voyiadjis G.Z, Baluch M.H., “Thick plates on elastic foundation”, ASCE, J. Engineering
Mech., 105,1041-1045, 1979.
[2] Svec O.J., “Thick plates on elastic foundation by finite elements”, Trans ASCE, J.
Engineering Mech., 102,461-477, 1976.
[3] Liew K.M, Han J.-B, Xiao ZM, Du H., “Differential quadrature method for Mindlin plates
on Winkler foundations”, Int. J. Mech. Sciences, 38(4), 405-421, 1996.
[4] Teo T.M, Liew K.M., “Differential cubature method for analysis of shear deformable
rectangular plates on Pasternak foundations”, Int. J. Mech. Sciences, 2002; 44: 1179-
1194.
[5] Wang J, Wang X.X, and Huang, M,K., “Fundamental solutions and boundary integral
equations for Reissner’s plates on elastic foundations”, Int. J. Solids Struct., 29,1233-
1239, 1992.
[6] Kobayashi H, Sonoda K., “Rectangular Mindlin plates on elastic foundations”, Int. J.
Mech. Sciences, 31, 679-692, 1989.
[7] Civalek Ö., “Harmonic Differential Quadrature-Finite differences Coupled Approaches
For Geometrically Nonlinear Static and Dynamic Analysis of Rectangular Plates on
Elastic Foundation”, J. of Sound and Vib.,294, 966-980, 2006.
[8] Buczkowski R, Torbacki W., “Finite element modeling of thick plates on two-parameter
elastic foundation”, Int. J. Numer.Anal. Meth. Geomech., 25, 1409-1427, 2001.
[9] Civalek Ö., “Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic
foundations by DSC-HDQ methods”, Applied Mathematical Modeling, 31,606-624, 2007.
[10] Winkler E., Die Lehre von der Elastizitat und Festigkeit, Prague, 182, 1876.
[11] Pasternak P.L., New method of calculation for flexible substructures on two-parameter
elastic foundation, Gosudarstvennoe Izdatelstoo, Literaturi po Stroitelstvu Arkhitekture,
Moskau, 1-56,1954, (in Russian).
[12] Daloğlu A, Doğangün A., and Ayvaz Y., “Dynamic Analysıs of Foundation Plates Using
A Consistent Vlasov Model” , J. Sound Vib., 224(5), 941-951, 1999.
[13] Ayvaz, Y., Daloğlu, A, and Doğangün A., “Application of a modified Vlasov model to
earthquake analysis of plates resting on elastic foundations”, J. Sound Vib., 212(3), 499-
509, 1998.
[14] Omurtag, M.H., Kadıoğlu F., “Free Vibration analysis of orthotropic plates resting on
Pasternak foundation by mixed finite element formulation”, Computers & Structures, 67,
253-265, 1998.
[15] Kadıoğlu, F. Omurtag, M.H., “Ortotrop plak-ortotrop zemin etkileşimindeki serbest
titreşim analizi için karışık SE formüşlasyonu”, III. Ulusal Hesaplamalı Mekanik
konferansı, 16-18 Kasım,81-88, 1988.
[16] Timoshenko SP, Woinowsky-Krieger W., “Theory of plates and shells”, McGraw-Hill,
New-York, 1970.
[17] Wei G.W., “Discrete singular convolution for the solution of the Fokker–Planck
equations”, J Chem. Phys, 1999;110: 8930-8942.
[18] Wei G.W., “A new algorithm for solving some mechanical problems”, Comput. Methods
Appl. Mech. Eng., 190, 2017-2030, 2001.
[19] Wei G.W., “Vibration analysis by discrete singular convolution”, J. of Sound Vib., 244,
535-553, 2001.
[20] Wei G.W., Zhao Y.B., and Xiang Y., “Discrete singular convolution and its application to
the analysis of plates with internal supports. Part 1: Theory and algorithm”, Int. J Numer
Methods Eng., 55, 913-946, 2002.
[21] Zhao Y.B., Wei G.W., and Xiang Y., “Discrete singular convolution for the prediction of
high frequency vibration of plates”, Int. J. Solids Struct.39, 65-88, 2002.
[22] Civalek Ö., “An efficient method for free vibration analysis of rotating truncated conical
shells”, Int. J. Pressure Vessels and Piping,83,1-12, 2006.
[23] Civalek Ö., “The determination of frequencies of laminated conical shells via the discrete
singular convolution method”, J. of Mechanics of Materials and Structures, 1(1),165-192,
2006.
[24] Civalek Ö., “Free vibration analysis of composite conical shells using the discrete singular
convolution algorithm”, Steel and Composite Structures, 6(4),353-366, 2006.
[25] Civalek Ö., “Three-dimensional vibration, buckling and bending analyses of thick
rectangular plates based on discrete singular convolution method”, Int. Journal of
Mechanical Sciences, 49,752-765, 2007.
[26] Civalek, Ö., “Numerical analysis of free vibrations of laminated composite conical and
cylindrical shells: discrete singular convolution (DSC) approach”, Journal of
Computational and Applied Mathematics, 205, 251 – 271, 2007.

Thank you for copying data from http://www.arastirmax.com