You are here

ALT MODÜLLERİN RADİKALLERİ ÜZERİNE

ON RADICALS OF SUBMODULES

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author

AMS Codes:

Abstract (2. Language): 
Let R be an associative ring with identity and M be a left R-module unitary. The M-radical of a submodule N in a R-module M, rad(N) is defined as the intersection of all prime submodules containing N. Various basic properties of M-radicals are discussed in multiplication modules. We determine the elemens of rad(N).
Abstract (Original Language): 
R bir asosyatif ve birimli bir halka ve M bir sol R-modül olsun. N , M nin has alt modülü olsun. N yi içeren bütün asal alt modüllerin kesişimine N alt modülünün M - radikali denir. N alt modülünün M -radikalini rad( ) N ile göstereceğiz. Bu makalede rad(N) yi elemanlarla belirtmeye çalışacagız.

REFERENCES

References: 

[1] Chin Pi Lu, Unions of Prime Submodules, Houston Journal of Mathematics, 23(2), 1997,
203-217.
[2] Chin Pi Lu, Prime Submodules of Modules, Comm. Math. Univ. Sancti Pauli 33, 1984,
61-69.
[3] Chin Pi Lu, M-radicals of Submodules in modules, Math. Japon. 34, 1989, 211-219.
[4] Chin Pi Lu, The Zariski Topolog y On The Prime Spectrum Of a module, Houston
Journal Of Mathematics, 1999.
[5] James Jenkins and Patrick F.Smith, Prime radical of a module over a commutative ring,
Comm. Algebra 20(12), 1992, 3593-3602.
[6] Marion E.Moore and Sally J. Smit, Prime and Radical Submodules of Modules Over
commutative rings, Communication in Algebra, Vol.30, No.10, 2002, 5037-5064.
[7] R.L. Mc Casland and P.F.Smith, Prime Submodules of Noetherian modules, Rocky Mtn.
J. , 1993, 1041-1062.
[8] W.W. Smith, A covering conditions for Prime ideals, Proc. Amer. Math. Soc. 30, 1971,
451-452.
[9] J.Dauns, Prime Submodules and one-sided ideals, In Ring Theory and Algebra III,
Prooceding of the third Oklahama Conference( B.R. Mc Donald), Dekker, Newyork,
1980, 301-344.
[10] Lawrence S.Levy, Modules over Hereditary Noetherian Prime Rings, International
Conference on Algebra and its Application, Ohio University, 1999.
[11] Gaur, Atul; Maloo, Alok Kumar; Parkash, Anand. Prime submodules in multiplication
modules. Int. J. Algebra 1, no. 5-8, 2007, 375-380.
[12] Tekir, U. A study on prime submodules. Algebras Groups Geom. 23, no. 4, 2006, 455-
461.
[13] Divaani-Aazar, Kamran; Esmkhani, Mohammad Ali. Associated prime submodules of
finitely generated modules. Comm. Algebra 33, no. 11, 2005, 4259-4266.
[14] Çallıalp, Fethi; Tekir, Ünsal. On unions of prime submodules. Southeast Asian Bull.
Math. 28, no. 2, 2004, 213-218.
[15] Çallialp, Fethi; Tekir, Ünsal, On the prime radical of a module over a noncommutative
ring. Taiwanese J. Math. 8, no. 2, 2004, 337-341.
[16] Ameri, Reza. On the prime submodules of multiplication modules. Int. J. Math. Math.
Sci., no. 27, 2003, 1715-1724.
[17] Behboodi, M.; Koohy, H. On minimal prime submodules. Far East J. Math. Sci. (FJMS)
6, no. 1, 2002, 83-88.
[18] Man, Shing Hing; Smith, Patrick F. On chains of prime submodules. Israel J. Math. 127
2002, 131-155.
[19] Xiao, Min Qing; Xin, Lin. Associated prime ideals and prime submodules of the modules
of generalized inverse polynomials. (Chinese) Fujian Shifan Daxue Xuebao Ziran Kexue
Ban 17, no. 4, 2001, 19-21, 33.
[20] Yassemi, Siamak. The dual notion of prime submodules. Arch. Math. (Brno) 37, no. 4,
2001, 273-278.
[21] Pournaki, M. R.; Tousi, M. A note on the countable union of prime submodules. Int. J.
Math. Math. Sci. 27, no. 10, 2001, 641-643.
[22] Cho, Yong Hwan. On distinguished prime submodules. Commun. Korean Math. Soc. 15,
no. 3, 2000, 493-498.
[23] Tiraş Yücel; Harmanci, Abdullah. On prime submodules and primary decomposition.
Czechoslovak Math. J. 50(125), no. 1, 2000, 83-90.
[24] Azizi, A.; Sharif, H. On prime submodules. Honam Math. J. 21, no. 1, 1999, 1-12.
[25] Marcelo, Agustín; Muñoz Masqué, J. Prime submodules, the descent invariant, and
modules of finite length. J. Algebra 189, no. 2, 1997, 273-293.
[26] Keskin, D.; Özcan, A. Ç.; Tiras, Y. On prime submodules. Far East J. Math. Sci. 4, no. 2,
1996, 163-168.
[27] McCasland, R. L.; Smith, P. F. Prime submodules of Noetherian modules. Rocky
Mountain J. Math. 23, no. 3, 1993, 1041-1062.
[28] McCasland, R. L.; Moore, M. E. Prime submodules. Comm. Algebra 20, no. 6, 1992,
1803-1817.

Thank you for copying data from http://www.arastirmax.com