You are here

Kendinden Uyarımlı Eşik Otoregresif Modellerin Belirlenmesi İçin Genetik Algoritma Yaklaşımı

A Genetic Algorithm Approach for the Specification of Self-Exciting Threshold Autoregressive Models

Journal Name:

Publication Year:

Abstract (2. Language): 
Even though, self-exciting threshold autoregressive (SETAR) models commonly used in nonlinear time series analysis nowadays have a simple, easy to understand and interpret model form, there are many free parameters to estimate, when building the models in question. Therefore in this paper the process of specification of SETAR models were considered as an optimization problem and the related problem was solved with genetic algorithms. In this context genetic algorithm components were defined for the discussed problem and appropriate parameters were determined for the algorithm. The usability of the proposed approach is shown by evaluating it with simulation data.
Abstract (Original Language): 
Günümüzde doğrusal olmayan zaman serisi analizinde yaygın olarak kullanılan kendinden uyarımlı eşik otoregresif (SETAR) modeller; anlaşılması ve yorumlanması kolay, basit bir model biçimine sahip olsalar da söz konusu modeller belirlenirken tahmin edilmesi gereken birçok serbest parametre bulunmaktadır. Bu nedenle bu çalışmada SETAR modellerini belirleme süreci bir optimizasyon problemi olarak düşünülmüş ve ilgili probleme genetik algoritmalar ile çözüm aranmıştır. Bu bağlamda ele alınan probleme ilişkin genetik algoritma bileşenleri tanımlanmış ve algoritma için uygun parametreler belirlenmiştir. Önerilen yaklaşım simülasyon verileri ile değerlendirilerek, kullanılabilirliği gösterilmiştir.
319
332

REFERENCES

References: 

Andrews, Donald W. K. (1993), “Tests for Parameter Instability and Structural Change With
Unknown Change Point”, Econometrica, Volume: 61, Issue: 4, p. 821–856.
Balcombe, Kelvin G. (2005), “Model Selection Using Information Criteria and Genetic Algorithms”,
Computational Economics , Volume: 25, Issue: 3, p. 207–228.
Baragona, Roberto, Francesco Battaglia ve Domenico Cucina (2004), “Fitting piecewise linear
threshold autoregressive models by means of genetic algorithms”, Computational Statistics &
Data Analysis, Volume: 47, Issue: 2, p. 277–295.
S.TAŞTAN, N.ÇİL / Kendinden Uyarımlı Eşik Otoregresif Modellerin Belirlenmesi İçin Genetik Algoritma Yaklaşımı
Siyaset, Ekonomi ve Yönetim Araştırmaları Dergisi, Nisan 2017, Cilt: 5, Sayı: 2, ss.319-332 331
Baragona, Roberto ve Domenico Cucina (2008), “Double threshold autoregressive conditionally
heteroscedastic model building by genetic algorithms”, Journal of Statistical Computation and
Simulation, Volume: 78, Issue: 6, p. 541–558.
Baragona, Roberto ve Domenico Cucina (2009), “Genetic search for threshold parameters in time
series threshold models: algorithms and computer programs”, TECHNICAL REPORT
10/2009, Department of Statistics, Probability and Applied Statistics, Sapienza University of
Rome, Italy.
Battaglia, Francesco ve Mattheos K. Protopapas (2011a), “Time-varying multi-regime models fitting
by genetic algorithms”, Journal of Time Series Analysis, Volume: 32, Issue: 3, p. 237–252.
Battaglia, Francesco ve Mattheos K. Protopapas (2011b), “Multi–regime models for nonlinear
nonstationary time series”, Computational Statistics , Volume: 27, Issue: 2, p. 319-341.
Bingul, Z. A. S. Sekmen S. Palaniappan ve S. Zein-Sabatto (2000), “Genetic algorithms applied to
real time multiobjective optimization problems”, Southeastcon 2000. Proceedings of the
IEEE, p. 95–103.
Blickle, Tobias ve Lothar Thiele (1995), “A Mathematical Analysis of Tournament Selection”,
Proceedings Of The Sixth International Conference On Genetic Algorithms, p. 9–16.
Cryer, Jonathan D. ve Kung-Sik Chan (2008), Time Series Analysis: With Applications in R (2nd
ed.), Springer.
De Gooijer, Jan G. (2001), “Cross-validation Criteria for Setar Model Selection”, Journal of Time
Series Analysis , Volume: 22, Issue: 3, p. 267–281.
Franses, Philip H. ve Dick van Dijk (2000), Nonlinear Time Series Models In Empirical Finance,
Cambridge University Press.
Gilli Manfred ve Peter Winker (2009), “Heuristic Optimization Methods In Econometrics”,
BELSLEY, David A. ve Erricos J. KONTOGHIORGHES (Ed.), Handbook of
Computational Econometrics , p. 81-119, John Wiley and Sons.
Gonzalo, Jesus ve Jean-Yves Pitarakis (2002), “Estimation And Model Selection Based Inference In
Single And Multiple Threshold Models”, Journal of Econometrics , Volume: 110, Issue: 2, p.
319–352.
Hamaker, E. L. (2009), “Using Information Criteria To Determine The Number Of Regimes In
Threshold Autoregressive Models”, Journal of Mathematical Psychology, Volume: 53, Issue:
6, p. 518–529.
Hansen, Bruce (1997), “Inference in TAR Models”, Studies in Nonlinear Dynamics ve Econometrics ,
Volume: 2, Issue: 1, p. 1-14.
Hansen, Bruce (1999), “Testing for Linearity”, Journal of Economic Surveys , Volume: 13, Issue: 5, p.
551–576.
Hansen, Bruce (2005), “Challenges for Econometric Model Selection”, Econometric Theory, Volume:
21, Issue: 1, p. 60–68.
Jeremy, Piger (2010), “Econometrics: Models of Regime Changes”, MEYERS, Robert A. (Ed.),
Complex Systems in Finance and Econometrics (1st ed.) , p. 190-202, Springer.
Maringer, Dietmar G. ve Mark Meyer (2008), “Smooth Transition Autoregressive Models - New
Approaches to the Model Selection Problem”, Studies in Nonlinear Dynamics &
Econometrics , Volume: 12, Issue: 1, p. 1-21.
Michalewicz, Zbigniew (1996), Genetic Algorithms + Data Structures = Evolution Programs (3rd
ed.), Springer.
S.TAŞTAN, N.ÇİL / A Genetic Algorithm Approach for the Specification of Self-Exciting Threshold Autoregressive Models
332 Research Journal of Politics, Economics and Management, April 2017, Vol: 5, Issue: 2, pp.319-332
Ong, Chorng-Shyong, Jih-Jeng Huang ve Gwo-Hshiung Tzeng (2005), “Model Identification Of
ARIMA Family Using Genetic Algorithms”, Applied Mathematics and Computation,
Volume: 164, Issue: 3, p. 885–912.
Peña, Daniel ve Julio Rodriguez (2005), “Detecting Nonlinearity In Time Series By Model Selection
Criteria”, International Journal of Forecasting, Volume: 21, Issue: 4, p. 731–748.
Sakawa, Masatoshi; (2002), Genetic Algorithms And Fuzzy Multiobjective Optimization, Springer.
Sivanandam, S. N. ve S. N. Deepa (2007), Introduction To Genetic Algorithms , Springer.
Strikholm, Birgit ve Timo Teräsvirta (2006), “A Sequential Procedure For Determining The Number
Of Regimes İn A Threshold Autoregressive Model”, The Econometrics Journal, Volume: 9,
Issue: 3, p. 472–491.
Şen, Zekai (2004), Genetik Algoritmalar Ve En İyileme Yöntemleri , İstanbul, Su Vakfı.
Tong, Howell (1978), “On A Threshold Model”, CHEN, C, (Ed.), Pattern Recognition And Signal
Processing, p. 575-586, NATO ASI Series E: Applied Sc. (29), Sijthoff ve Noordhoff,
Netherlands
Tong, Howell (1983), Threshold Models in Non-linear Time Series Analysis , New York, Springer.
Tong, Howell (1990), Non-Linear Time Series: A Dynamical System Approach, Oxford University
Pres.
Tong, Howell ve K. S. Lim (1980), “Threshold Autoregression, Limit Cycles and Cyclical Data”,
Journal of the Royal Statistical Society. Series B (Methodological) , Volume: 42, Issue: 3, p.
245-292.
Tsay, Ruey S. (1989), “Testing and Modeling Threshold Autoregressive Processes”, Journal of the
American Statistical Association, Volume: 84, Issue: 405, p. 231-240.
Wong, C. S. ve W. K. Li (1998), “A Note On The Corrected Akaike Information Criterion For
Threshold Autoregressive Models”, Journal of Time Series Analysis , Volume: 19, Issue: 1, p.
113-124.
Wu, Berlin ve Chih-Li Chang (2002), “Using Genetic Algorithms To Parameters (d,r) Estimation
For Threshold Autoregressive Models”, Computational Statistics & Data Analysis , Volume:
38, Issue: 3, p. 315-330.
Zivot, Eric ve Jiahui Wang (2006), Modeling Financial Time Series With S-PLUS, Birkhäuser.

Thank you for copying data from http://www.arastirmax.com