You are here

Glifosatın Su Mercimeği (Lemna minor L.)’nin Nişasta Birikimine, Klorofil ve Enzim Aktiviteleri Üzerine Etkileri

Effects of Glyposate on Starch Accumulation, Chlorophyll and Enzyme Activity of Duckweed (Lemna minor L.)

Journal Name:

Publication Year:

Abstract (2. Language): 
We investigated that effect of glyphosate on chlorophyll and enzyme activity of duckweed (Lemna minor) in the study. The experiment consisted of two stages. Firs stage, L. minor was collected fresh water and drainage water of agriculture land in Erzurum. At second stage, L. minor plants has been acclimated before glyphosate treatment for 2 weeks and these plant sample were exposure with different concentrations of glyphosate (0.48, 2.4, 4.8 and 19.2 gL-1) in laboratory conditions. NH3-N, NO3-N, NO2-N and PO4-P concentrations in water sample and starch content (%) of the plant, Chl-a and Chl-b concentration differences at p<0.05 were considered as statistically significant. Catalyze enzyme activity exhibited to change depending on glyphosate treatment. Chlorophyll-a and chlorophyll-b were determined the highest mean 0.006 mgL-1 and 0.011 mgL-1 in the control group on 14. day, respectively. The lowest mean for both of them were found 0.000001 mgL-1 at 19.2 gL-1 concentrations glyphosate exposure on 14. day. Starch accumulation was calculated to be the highest value (11.18%) at concentrations of 19.2 gL-1 and the lowest value (11.15%) at 0.48 gL-1 concentrations. According to results of the present study, L. minor was found as a natural purification method for the removal of glyphosate. Nevertheless, both histopathology disorder and enzyme activity should be investigated together to understand the effect of glyphosate on duckweed.
Abstract (Original Language): 
Bu çalışmada, Su mercimeği (Lemna minor) bitkisinin klorofil ve enzim aktivitesi üzerinde glifosat uygulamasının etkisi araştırdık. İlk olarak Erzurum İli’ndeki farklı su kaynaklarından ve tarımsal alanlardaki deşarj sularından L.minor bitkisi toplanmıştır. İkinci aşamada L.minor iki hafta aklimasyona tabi tutulmuştur ve su mercimeğine laboratuar ortamında 0,48 gL-1; 2,4 gL-1; 4,8 gL-1; 19,2 gL-1 konsantrasyonlarında glifosat uygulanmıştır. Deneme sonucunda su örneklerindeki NH3-N, NO3--N, NO2--N and PO4-P değerleri ve bitkideki nişasta oranı (%), klorofil a ve klorofil b değerleri istatistikî açıdan önemli bulunmuştur (p<0,05). Katalaz enzim aktivitesi glifosat uygulamasına bağlı olarak değişim göstermiştir. Klorofil a ve klorofil b değerleri sırasıyla en yüksek ortalama 0,006 mgL-1 ve 0,011 mgL-1 olarak kontrol grubunda 14. günde saptanmıştır. Hem klorofil a hem de klorofil b için en düşük değer (0,000001 mgL-1) 19,2 gL-1 glifosat konsantrasyonunda 14. günde bulunmuştur. Nişasta birikimi en yüksek (%11,18) 19,2 gL-1 konsantrasyon ve en düşük (% 11,15) 0,48 gL-1 konsantrasyon uygulamasında hesaplanmıştır. Bu çalışmaya göre, L.minor bitkisinin glifosatın uzaklaştırılmasında doğal bir arıtım yöntemi olarak kullanılabileceği tespit edilmiştir. Bunun yanı sıra glifosatın su mercimekleri üzerine etkilerinin tam olarak anlaşılabilmesi için histoptalojik çalışmalar ile beraber enzim aktivitelerinin araştırılması tavsiye edilmektedir.
32
41

REFERENCES

References: 

Aebi, H. (1984). Catalase in vitro. Methods in Enzymology.105: 121–126. doi:10.1016/S0076-6879(84)05016-3.
Anonymous. (1995). Standard Methods for the Examination of Water and Wastewater (APHA), nineteenth ed. American Public Health Association, Washington, DC.
Appenroth K., Krech K., Keresztes A., Fischer W. & Koloczek H. (2010). Effects of nickel on the chloroplasts of the duckweeds Spirodela ployrhiza and Lemna minor and their possible use biomonitoring and phytoremediation. Chemosphere 78:216-233. doi:10.1016/j.chemosghere.2009.11.2007.
Ayoola, S. O. (2008). Toxicity of glyphosate herbicide on Nile tilapia (Oreochromis niloticus) juvenile. African Journal of Agricultural Research 3(12), 825-834.
Cakmak, S. (2012). The detection of physiological and genomics changes occur in characteristics ducweed (Lemna gibba L.) plant due to heavy metal stress. MS Thesis. Ataturk University The Institute of Science and Technology.
Cedergreen, N. & Streibig, J.C.. (2005). The toxicity of herbicides to non-target aquatic plants and algae: assessment of predictive factors and hazard. Pest Management Science. 61:1152–1160.
Cirik, Ş., Cirik, S. & Dalay, M.C. (2011). Water Plant II. Press by Eagean University. No: 61. İzmir Turkey p. 160. (Turkish)
Franz, JE. (1970). N-phosphonomethyl-glycine phytotoxicant compositions, issued 1974-03-26, Assigned to Monsanto Company.
Ge X., Zhanga N., Phillips G.C. & Xu J. (2012). Growing Lemna minor in agricultural wastewater and converting the duckweed biomass to ethanol. Bioresource Technology. 124: 485-488. doi: 10.1016/j.biortech.2012.08.050.
Giesy, J. P.; Dobson, S. & Solomon, K. R. (2000). Ecotoxicological risk assessment for Roundup® herbicide. Rev. Environ. Contam. Toxicol. 167: 35−120. doi: 10.1007/978-1-4612-1156-3_2.
FAKIOĞLU ve ATAMANALP 2017 SDU-ESUFD 13(1), 32-41
40
Iwase, T., Tajima A., Sugimoto, S., Okuda, K., Hironaka, I., Kamata, Y., Takata, K. & Mizunoe, Y. A. (2013). Simple assy for measuring catalase activity: A visual approach. Scientific Reports. p. 1-4.
Kesici, T. & Kocabaş, Z. (2007). Biyoistatistik. Ankara University Faculty of Medicine. Department of Biostatistic. No: 94. 366, Ankara, Turkey.
Kielak, E., Sempruch, C., Mioduszewska, H., Klocek, J. & Leszczynski, B. (2011). Phytotoxicity of Roundup Ultra 360 SL in aquatic ecosystems: Biochemical evaluation with duckweed (Lemna minor L.) as a model plant. Pesticide Biochemistry and Physiology. 99(3): 237-243. doi:10.1016/j.pestbp.2011.01.002.
Körner, S., Lyatuu, G.B. & Vermaad, J.E. (1998). The influence of L. gibba L. on the degration of organic material in duckweed-croved domestic wastwater. Water Res. 32(10), 3092-3098. Doi:10.1016/S0043-1354(98)00054-2.
Landoult, E. (1986). The family of Lemnaceae-a monographic study. Veroeffentlichungen des Geobotanischen Institutes ETH, vol 1, Stiftung Rubebel, Zurich, Switzerland.
Leandro, Paiola, A., Goncalves, A.D., Jamil, C. & Silverio, O. (2011). Alessandro B., Albrecht AJP. physiological quality of Rr soybean seeds in response to the use of different treatments with sequential glyphosate application. Bioscience Journal 2, 211-220.
Leblebici, Z. & Aksoy, A. (2011). Growth and lead accumulation capacity of Lemna minor and Spirodela polyrhiza (Lemnaceae): Interactions with nutrient enrichment. Water Air Soil Pollut. 214:175-184. doi: 10.1007/s11270-010-0413-1.
Lockhart, W. L., Billeck, B. N. & Baron, C. L. (1989). Bioassays with a floating aquatic plant (Lemna minor) for effects of sprayed and dissolved glyphosate. Environmental Bioassay Techniques and their Application. 54, 353-359.
Magel, E. (1991). Qualitative and quantitative determination of starch by a colorimetric method. Starch, 43 (10), 384–387. doi: 10.1002/star.19910431003.
Mechora S., Stibilj V. & Germ M. (2015). Response of ducweed to varios concentrations of selenite. Enviro.Sci. Pollut Res. 22,2416-2422. doi: 10.1007/s11356-014-3270-4.
Obermeier, M., Schröder, C. A., Helmreich, B. & Schröder, P. (2015). The enzymatic and antioxidative stress response of Lemna minor to copper and a chloroacetamide herbicide. Environ Sci Pollut Res. 22,18495–18507. doi:10.1007/s11356-015-5139-6.
OECD (ISO 20079). (2006). Guideline for testing of chemicals, No. 221, Lemna sp. Growth Inhibition test.
Pérez, G. L., Vera, M.S. & Miranda, L.A. (2011). Effects of herbicide glyphosate and glyphosate-based formulations on aquatic ecosystems. 16 cehapter. p. 343-369. IIB-Intech Unsam Conıcet 2uba Conıcet. Argentin.
Primel, E.G., Zanella, R., Kurz, M.H.S., Goncalves, F.F., Machado, S.O. & Marchezan, E. (2005). Poluic¸ ão das águas por herbicidas utilizados no cultivo do arroz irrigadona região central do Estado do Rio Grande de Sul. Brasil: Predic¸ ão teórica emonitoramento. Quím. Nova 48 (4), 605–609.
Resmankova, E. & Sirova, D. (2007). Wetland macrophyte decomposition under different nutrient conditions: relationships between decomposition rate, enzyme activities and microbial biomass. Soil Biology and Biochemistry. 39,526-538. doi.org/10.1016/j.soilbio.2006.08.022.
Shannon, L.M., Kay, E. & Lew, J.Y. (1996). Peroxidaz isozymes from horseradish roots. The Journal of Biological Chemistry. 9,2166-2172.
Sims, A., Gajaraj, S. & Hu, Z. (2013). Nutriend Removal and greenhouse gas emissions in duckweed treatment ponds. Water Research. 47,1390-1398. doi:10.1016/j.watres.2012.12.009.
Smith, I.S., Vierheller, T.L. & Thorne, C.A. (1988). Assay of glutathione reductase in crude tissue homogenates using 5,5%-dithiobis(2-nitrobenzoic acid). Anal. Biochem. 175, 408–413. doi:10.1016/0003-2697(88)90564-7.
FAKIOĞLU ve ATAMANALP 2017 SDU-ESUFD 13(1), 32-41
41
Smith, M.D. & Moelyowati, I. (2001). Duckweed based wastewater treatment (DWWT): Design guidelines for hot climates, Water Science and Technology, 43 (11), 291-299.
Sobrero, M. C., Rimoldi, F. & Ronco, A. E. (2007). Effects of the glyphosate active ingredient and a formulation on Lemna gibba L. at different exposure levels and assessment end-points. Bull Environ Contam Toxicol. 79,537–543.
Song, L., Vijver, M. & Peijnenburg, W.J.G.M. (2015). Comparative toxicity of copper nanoparticles across three Lemnaceae species. Science of the Total Enviromment. 518 (519),217-224. doi:10.1016/j.scitotenv.2015.02.079.
Sree, S. K., Adelmann, K., Garcia, C., Lam, E. & Appenroth, K. (2015). Natural variance in salt tolarance and induction of starch accumulation in duckweeds. Planta. 241,1935-1404. doi:10.1007/s00425-015-2264.
Sree, S. K., Keresztes, A., Mueller-Roeber, B., Brandt, R., Eberius, M. Fischer, W. & Appenroth, K. (2015). Phytotoxicity of cobalt ions o the duckweed Lemna minor - Morphology, ion uptake, and starch accumulation. Chemosphere 131,149-156. doi:10.1016/j.chemosphere.2015.03.008.
Tao, X., Fang, Y., Xiao, Y., Jin, Y.L., Ma, X.R., Zha, Y. , He, K.Z. , Zhao, H. & Wang, H.Y. (2013). Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation. Biotechnology for Biofuels. 6(72),1-15. doi:10.1186/1754-6834-6-72.
Tchobanoglous, G. & Burton, E.F. (1991). Wastewater Engineering Treatment and Reuse (Fourth Edition). "Wastewater Engineering."Management. 7: 1-4.
Topal, A., Atamanalp, M., Uçar, A., Oruç, E., Kocaman, E., Sulukan, E., Akdemir, F., Beydemir, Ş., Namık Kılınç Erdoğan, O. & Ceyhun, S. (2015). Effects of glyphosate on juvenile rainbow trout (Oncorhynchus mykiss): Transcriptional and enzymatic analyses of antioxidant defence system, histopathological liver damage and swimming performance. Ecotoxicology and Environmental Safety, 111, 206-214. doi:10.1016/j.ecoenv.2014.09.027.
Xiao, Y., Fanga, Y., Jina, Y., Zhanga, G. & Zhao, H. (2013). Culturing duckweed in the field for starch accumulation. Industrial Crops and Products. 48,183-190. doi:10.1016/j.indcrop.2013.04.017.
Xu, J., Cui, W., Cheng, J.I. & Stomp, A.M. (2011). Production of hight-starch duckweed and its conversion to bioethanol. Biosystems Engineering. 110,67-72. doi:10.1016/j.biosystemseng.2011.06.007.
Yılmaz, Z., Gür, K. & Tarlan, E. (2005). Characterization and treatability of S.U. campus waterwest by duckweed (Lemna minor L.). J.Fac.Eng.Arch.Selcuk Univ. 4, 1-10.

Thank you for copying data from http://www.arastirmax.com