You are here

PAZARLAMA ALANINDA YAPAY ZEKÂ KULLANIM POTANSİYELİ VE AKILLI KARAR DESTEK SİSTEMLERİ

POTENTIAL OF USING ARTIFICIAL INTELLIGENCE AND INTELLIGENT DECISION SUPPORT SYSTEMS IN MARKETING AREA

Journal Name:

Publication Year:

DOI: 
http://dx.doi.org/10.7827/TurkishStudies.12022
Abstract (2. Language): 
In recent years, developments in the field of information and communication technologies have led to the gradual depreciation of mass marketing methods. The reason is that customers are now able to buy products and / or services from the point of sale anywhere in the world when they want it. This situation has changed the mass marketing concept and led to the direct marketing approach based on one-to-one relationship with the customer. The technology have been changed lifestyles of customers and differentiated their demands and expectations. Of course, these changes deeply affect the marketing work in the business world. To keep pace with these changes, but it is possible to take part in marketing management of effective new technologies and to develop intelligent systems that will help in determining the right strategy in marketing. Intelligent systems can be developed by using artificial intelligence technologies. These technologies such as artificial neural networks, machine learning, expert systems separate into different study areas. Aim of this study is to research the potential of using artificial intelligence in the field of marketing and to introduce new applications in this area and to present integrated decision support studies on national-international field of marketing management. Especially, the bank services marketing management system, Intelligent Bank Services Market Management System (IBMMS), which is an intelligent decision support system developed by using AI technology, is presented here and given information about the methodology and operation of how such systems are developed. This study will provide important contributions to new works by shedding light on how the technologies of the market are used up to now, how they can be used in the future and how to develop new AI applications.
Abstract (Original Language): 
Son yıllarda, bilişim ve iletişim teknolojileri alanındaki gelişmeler kitlesel pazarlama yöntemlerinin giderek değer kaybetmesine neden olmaktadır. Çünkü artık müşteriler istedikleri zaman dünyanın herhangi bir yerindeki satış noktasından ürün ve/veya hizmet satın alabilmektedir. Bu durum kitlesel pazarlama anlayışının değişerek yerine müşteri ile birebir ilişkiye dayalı doğrudan pazarlama anlayışının otaya çıkmasına neden olmuştur. Teknoloji, müşterilerin yaşam tarzlarını değiştirerek bireysel taleplerin ve beklentilerin farklılaşmasına neden olmaktadır. Bu değişim elbette iş dünyası içinde pazarlama çalışmalarını da derinden etkilemektedir. Söz konusu değişime ayak uydurmak ancak etkin ve yeni teknolojilerin pazarlama yönetiminde yer almasını sağlamakla mümkün olacaktır. Bu alanda doğru stratejileri belirleyecek akıllı sistemlerin geliştirilmesi stratejik öneme sahiptir. Akıllı sistemler yapay zekâ teknolojileri kullanılarak geliştirilebilir. Bu teknolojiler; yapay sinir ağları, makine öğrenmesi, uzman sistemler gibi farklı çalışma alanlarına ayrılır. Bu çalışmanın amacı Yapay zekânın pazarlama alanındaki kullanım potansiyelini araştırmak bu alandaki yeni uygulamamaları tanıtmak ve ulusal-uluslararası alanda pazarlama yönetimi ile ilgili yapılmış karar destek çalışmalarını ortaya koymaktır. Özellikle YZ teknolojisi kullanılarak geliştirilen akıllı bir karar destek sistemi olan Banka hizmetleri pazarlama yönetim sistemi Intelligent Bank Services Market Management System (IBMMS) çalışmasına burada yer verilerek bu tür sistemlerin nasıl geliştirildiğine dair metodoloji ve işleyişi hakkında bilgi verilmiştir. Bu çalışma, pazarlama alanında şimdiye kadar YZ teknolojilerinin nasıl kullanıldığı, gelecekte nasıl kullanılabileceği ve yeni YZ uygulamalarının nasıl geliştirilebileceği konusuna ışık tutarak yeni çalışmalara önemli katkılar sağlayacaktır.
109
124

REFERENCES

References: 

Ata, A.H. ve Seyrek, İ.H., (2009). “The Use of Data Mining Techniques in Detecting Fraudulent Financial Statements: An Application on Manufacturing Firms”, Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi,14 (2): 157-170.
Gopal, R. (2001). Ad mediation: new horizons in effective email advertising, Communications of the ACM, 19: 17–30.
Hart, M. (2008). Systems for supporting marketing decisions, In: Burstein F, Holsapple C, editors. Handbook on Decision Support Systems, 395–418.
Jonker, J., Piersma N. and Potharst R. (2006). A decision support system for direct mailing decisions, Decision Support Systems, 42: 915–925.
Kiani, R.G. (1998). Marketing Opportunities in the Digital World, Internet Research: Electronic Networking Applications and Policy, 8 (2): 185–194.
Kim, Y. and Street W.N. (2004). An intelligent system for customer targeting: a data mining approach, Decision Support Systems, 37: 215–228.
Kotler, P. (2000). Pazarlama Yönetimi. Çeviri: Nejat Muallimoğlu. İstanbul: Beta Basım Yayım Dağıtım A. Ş.
Keleş A. and Keleş A. (2008). ESTDD: Expert system for thyroid diseases diagnosis. Expert Systems with Applications, 34(1), 242-246.
124 Ali KELEŞ - Aytürk KELEŞ - Eyüp AKÇETİN
Turkish Studies
International Periodical for the Languages, Literature and History of Turkish or Turkic
Volume 12/11
Keleş A. and Keleş A. (2015). Ibmms Decision Support Tool for Management Of Bank Telemarketing Campaigns, International Journal Of Database Management Systems ( Ijdms ), 7 (5):1-15.
LI, S., and Davies B.J. (2001). Key issues in using information systems for strategic marketing decisions, Int. J. Management and Decision Making, 2: 16-34.
Mcdaniel, R. (2007). Management strategies for complex adaptive systems, Performance Improvement Quarterly, 20: 21–42.
McDonald, W. J. (1998). Direct Marketing. Amerika: McGraw- Hill.
Mckelvey, B. (1999). Avoiding complexity catastrophe in coevolutionary pockets: strategies for rugged landscape, Organization Science, 10: 294–321.
Moro, S., Laureano R. and Cortezp P. (2011). Using Data Mining for Bank Direct Marketing: an application of the CRISP-DM methodology, In Novais P. et al. editors. Proceedings of the European Simulation and Modelling Conference – ESM, Guimarães, Portugal, EUROSIS 2011, 117-121.
Nie, G., Rowe W., Zhang L., Tian Y. and Shi Y. (2011). Credit card churn forecasting by logistic regression and decision tree, Expert Systems with Applications, 38: 15273–15285.
Olson, D. L. and Bongsug(Kevin) C. (2012). Direct marketing decision support through predictive customer response modeling, Decision Support Systems,54: 443-451.
OU, C., C. LIU, J. HUANG and N. ZHONG (2003) On Data Mining for Direct Marketing, Proceedings of the 9th RSFDGrC conference 2003, 491–498.
Öztemel, E., 1992. Integrating Expert Systems and Neural Networks for Intelligent Online Statistical Process Control. PhD Thesis: UWCC, ABD.
Rao, S.K. (2000). Marketing decision support systems for strategy building. Marketing Health Services, 20: 14-8.
Simon, H.A.,(1958). Rational and the Structure of the Environment. MIT Press, Cambridge, Massachusetts.
Sisodia, R.S. (1992). Marketing information and decision support systems for services. Journal of Services Marketing, 6: 51-64.
Stone, B. (1998). Successful Direct Marketing Methods. Lincolnwood: National Textbankco,3.
Vargo, S. and Lusch R. (2004). Evolving to a new dominant logic for marketing. Journal of Marketing, 68: 1–17.
Verhoef, P., Spring P., Hoekstra J. and Leeflang P. (2002). The commercial use of segmentation and predictive modeling techniques for database marketing in the Netherlands. Decision Support Systems, 34: 471–481.
OU, C., C. LIU, J. HUANG and N. ZHONG (2003) On Data Mining for Direct Marketing, Proceedings of the 9th RSFDGrC conference 2003, 491–498.
A Starter Guide to AI in Marketing. http://www.hugeinc.com/ideas/perspective/a-starter-guide-to-ai-in-marketing (Erişim Tarihi: 25.04.2017)

Thank you for copying data from http://www.arastirmax.com