You are here

Karbon Çeliğinin Seramik Kesici Takımlarla İşlenmesinde Yüzey Pürüzlülüğünün Değerlendirilmesi

SURFACE ROUGHNESS EVALUATION WHEN MACHINING CARBON STEEL WITH CERAMIC CUTTING TOOLS

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
The response surface methodology was adopted to investigate the effects of main cutting parameters such as cutting speed, feed rate, and depth of cut on the surface roughness when turning AISI 1050 carbon steel. Machining tests were carried out with uncoated ceramic (KY1615) and coated ceramic cutting tools (KY4400). Optimal machining conditions for the desired surface finish were determined. The adequacy of the second order developed model was analyzed by using analysis of variance. The experimental results indicated that the feed rate was the dominant factor, followed by the depth of cut. The cutting speed showed the minimal effect on the surface roughness. It could be seen that the KY1615 tool produced a better surface roughness than the KY4400 tool. It was shown that average surface roughness’ of Ra values were about 2.515 μm, 2.984 μm for the KY1615, KY4400 cutting tools, respectively. Furthermore, the analysis of variance for the second-order model indicated that squares terms were significant on the roughness, but interaction terms of cutting parameters were insignificant for both cutting tools.
Abstract (Original Language): 
AISI 1050 karbon çeliğinin tornalanmasında yüzey pürüzlülüğü üzerinde ana kesme parametreleri kesme, ilerleme miktarı ve talaş derinliğinin etkilerini araştırmak amacıyla yanıt yüzey tekniği benimsenmiştir. İşlenebilirlik deneyleri kaplamasız seramik (KY1615) ve kaplamalı seramik (KY4400) takımlarla yapılmıştır. İstenilen yüzey pürüzlülüğü için optimum kesme şartları tanımlanmıştır. Deneysel sonuçlarda ilerleme miktarı en etkin faktör iken bunu talaş derinliği izlemiştir. KY1615 takımların KY4400 takımlardan daha iyi yüzey pürüzlülüğü sağladığı görülmüştür. Ra yüzey pürüzlülük değerlerinin ortalaması KY1615 takım için 2.525 μm iken KY4400 takımlar için 2.984 μm’dir. Ayrıca, ikinci dereceden modellerin varyans analizleri terimlerin karelerinin yüzey pürüzlülüğü üzerinde etkili olduğunu göstermiş fakat kesme parametrelerinin etkileşim terimleri her iki kesici takım içinde anlamsız etki yaratmıştır.
139-145

REFERENCES

References: 

1. Abouelatta, O.B. and Mádl, J.,(2001) Surface roughness prediction based on cutting parameters and vibrations
in turning operations, J. Mater. Proces. Technol., 118, 269-277.
2. Arbizu, I.P. and Perez, C.J.L., (2003) Surface roughness prediction by factorial design of experiments in
turning processes, J. Mater. Process .Technol., 143-144, 390-396.
3. Beauchamp, Y., Thomas, M., Youssef, A. and Masounave, J.,(1996) Investigation of cutting parameter effects
on surface roughness in lathe boring operation by use of a full factorial design, Comp.& Ind. Engineer.,
31(3-4), 645-651.
4. Choudhury, I.A. and El-Baradie, M.A., (1997) Surface roughness prediction in the turning of high-strength
steel by factorial design of experiments, J.Mater.Proc.Technol., 67(1-3), 55-61.
5. Davim, J. P., (2001) A note on the determination of optimal cutting conditions for surface finish obtained in
turning using design of experiments, J. Mater. Process. Technol., 116, 305-308.
6. Davim, J.P. and Figueira, L., (2006) Machinability evaluation in hard turning of cold tool steel (D2) with
ceramic tools using statistical techniques, Materials & Design, 28(4), 1186-1191.
7. Darwish, S.M., (2001) The impact of the tool materials and the cutting parameters on surface roughness of
supermet 718 nickel alloy, J. Mater. Process. Technol., 97, 10- 15.
8. Diniz, A.E. and Micaroni, R., (2002) Influence of refrigeration/lubrication condition on SAE 52100 hardened
steel turning at several cutting speeds, Int. J. Mach. Tools& Manufact., 42, 899-904.
9. Escalona, P.M. and Cassier, Z., (1998) Influence of the critical cutting speed on the surface finish on turned
steel, Wear, 218, 103-109.
10. Feng, C.X.J. and Wang, X., (2002) Development of empirical models for surface roughness prediction in
finish turning, Int. J. Advan. Manuf. Technol., 20, 348-356.
11. Kơpac, J., Bahor, M. and Sokovic, M.,(2002) Optimal machining parameters for achieving the desired surface
roughness in fine turning cold pre-formed steel work processing, Int. J. Mach. Tools & Manuf., 42, 707-
716.
12. Lima, J.G., Avila, R.F., Abrao, A.M., Faustin, M. and Davim, J.P., (2005) Hard turning: AISI 4340 high
strength low alloyed steel and AISI D2 cold work steel, J. Mater. Proc. Technol., 169, 388-395.
13. Lin, W.S., Lee, B.Y. and Wu, C.L., (2001) Modeling the surface roughness and cutting force for turning, J.
Mater. Process. Technol., 108, 286-293.
14. Mital, A. and Mehta, M.,(1998) Surface finish prediction models for fine turning, Int. J. Prod. Res., 26-12,
1861-1876.
15. Montgomery, C. D., (1996) Design and Analysis of Experiments, John Willy and Sons, USA.
16. Motorcu, A.R., (2006), Machinability of AISI 1050, AISI 4140 and AISI E 52100 steels’ by different cutting
tools and development of models, Ph.D. Thesis, Gazi University Institute of Science and Technology, Ankara.
17. Noordin, M.Y., Venkatesh, V.C., Sharif Elting, S. and Abdullah, A.,(2004) Application of response surface
methodology in describing the performance of coated carbide tools when turning AISI 1045 steel, J. Mater.
Process. Technol., 145(1), 46 -58.
18. Sahin, Y. and Motorcu, A. R., (2004) Prediction of surface roughness in machining of carbon steel by CVD
coated cutting tools, Proc. 8th Intern. Conf. on Numerical Methods in Industrial Forming Processes, Uniform
2004, Ohio State University, Mechanical Engineering Department, USA, 141-147.
19. Sahin, Y. and Motorcu, A.R, (2004) A model for surface roughness in turning AISI 4140 steel using coated
carbide cutting tools, 11th Int. Conf. on Mach. Des. & Prod., Antalya/Turkey, 11-15.
20. Sahin, Y. and Motorcu, A. R., (2005) Surface roughness model for machining of mild steel by coated cutting
tools, J. Mater. & Des., 26, 321-326.
21. Sata, T., Li, M., Takata, S., Hiraaka, H., Li, C. Q., Xing, X.Z and Xiao, X.G.,(1985) Analysis of surface
roughness generation in turning operation and its applications, CIRP Annals. 341, 473-476.
22. Suresh, P.V.S, Venkateswara, R.P and Desmukh, S.G.,(2002) A genetic algorithmic approach for optimization
of the surface roughness prediction model, Int. J. Mach. Tools & Manuf., 42, 675-680.
23. Yan, D., Popplewell, N., Balkrisnan, S. and Kaye, J.E.,(1996) On-line prediction of surface roughness in
finish turning, Eng. Des. Auto., 2(2), 115-126.
24. Yang, W.H., Tarng, Y.S., (1998) Design optimization of cutting parameters for turning operations based on
the Taguchi method, J. Mater. Process. Technol., 84, 123-129.
25. Yen, Y.C., Jain, A. and Altan, T., (2004) A finite-element analysis of orthogonal machining using different
tool edge geometries, J. Mater. Process. Technol.,146, 72-81.

Thank you for copying data from http://www.arastirmax.com