You are here

ISI POMPASI DESTEKLİ KURUTMA SİSTEMLERİNDE BY-PASS ORANININ KURUTMA PERFORMANSINA ETKİSİNİN DENEYSEL ANALİZİ

Experimental Analysis of the By-Pass Air Ratio Effect on the Drying Performance at the Heat Pump Assisted Dryer Systems

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, a prototype, closed loop heat pump-assisted dryer (HPD) system with the refrigerant R134a was designed, and tested. The effects of by-pass air ratio (BAR) for two different air flow rates on the system’s performance were investigated. The system performances were evaluated in terms of the heat pump performance (COPhp), the performance of all systems (COPsys) and specific moisture extraction rate (SMER). The experimental results showed that bypassing the air more than 50% reduced the COP and SMER values. The COP and SMER values remained nearly constant up to the BAR of 50% and then sharply decreased. The maximum COPhp, COPsys and SMER values were obtained as 4.8, 3.2 and 3.5 kg/kWh, respectively. It was also observed that increasing the air flow rate did not improve the performance of the system. Because, the consumption of the fan was also high, so ITKsis affected negatively.
Abstract (Original Language): 
Bu çalışmada R134a soğutucu akışkan kullanılan prototip bir kapalı sistem ısı pompası destekli kurutucu deney düzeneği tasarlandı ve test edildi. İki farklı hız için by-pass oranının sistem performansına etkisi incelendi. Sistem performansına etki eden parametreler, ısı pompası ısıtma tesir katsayısı (ITKıp), tüm sistemin ısıtma tesir katsayısı (ITKsis) ve özgül nem çekme oranı (SMER) hesaplandı. Deneysel sonuçlarda, by-pass oranı % 50’den fazla olduğu durumlarda ITK ve SMER değerlerinin azaldığı görüldü. ITK ve SMER değerleri yaklaşık % 50 by-pass oranına kadar arttığı ve daha sonra hızla azaldığı görüldü. Maksimum ITKıp, ITKsis, SMER değerleri yaklaşık olarak 4.8, 3.2 ve 3.5 kg/kWh olarak elde edildi. Ayrıca hava debisinin arttırılmasının sistem performansını iyileştirmediği gözlemlendi. Çünkü yüksek hava debilerinde fanın tükettiği güç değeri de fazla olduğundan dolayı ITKsis değeri olumsuz yönde etkilendi.

REFERENCES

References: 

1. Abou-Ziyan, H.Z., Ahmed, M. F., Metwally, M.N., Abd El-Hameed, H.M. (1997).
Solar assisted R22 and R134a heat pump syestems for low-temperature
applications, Applied Thermal Engineering, 17(5), 455-469.
2. Achariyaviriya, S., Soponronnarit, S., Terdyothin, A. (2000). Mathematical model
development and simulation of heat pump fruit dryer, Drying Technology, 18(1&2),
479-491.
3. Adapa, P.K., Schoenau, G.J. (2005). Re-circulating heat pump assisted continuous
bed drying and energy analysis, International Journal of Energy Research, (29),
961–72
4. Alves-Filho, O., Thorbergsen, E., Strommen, I. (1998). A component model for
simulation of multiple fluidized bed HPDs, In Proceedings of the 11th international
drying symposium, Vol. A. 94–10
5. Ameen, A., Bari, S. (2004). Investigation into the effectiveness of heat pump
assisted clothes dryer for humid tropics, Energy Convers Manage, (45), 1397–405
6. Bannister, P., Carrington, G., Chen, G. (2002). Heat pump dehumidifier drying
technology—Status, potential and prospects, Proceedings of 7th IEA Heat Pump
Conference, Beijing, China, May 19–22.
7. Chua, K.J., Chou, S.K. (2005). A modular approach to study the performance of a
two-stage heat pump system for drying, Applied Thermal Engineering, (25), 1363–
1379.
8. Chua, K.J., Mujumdar, A.S., Hawlader, M.N.A., Chou, S.K., Ho, J.C. (2001).
Batch drying of banana pieces – effect of stepwise change in drying air temperature
on drying kinetics and product color, Food Research International, (34), 721–31
9. Clements, S., Jai, X., Jolly, P. (1993). Experimental verification of a heat pump
assisted-continuous dryer simulation model, International Journal of Energy
Research, (17), 19-28.
10. Geeraert, B. (1976). Air drying by heat pumps with special reference to timber
drying, in: E. Camatini, T. Kester (Eds.), Heat Pumps and their Contribution to
Energy Conservation, NATO advanced study institute series E, Applied Science,
Leydon, Noordhoff, (15), 219–246.
11. Hawlader, M.N.A., Perera, C.O., Tian, M. (2006). Properties of modified
atmosphere heat pump dried foods, Journal Of Food Engineering, (74), 392–401
12. Jia, X., Jolly, P., Clements, S. (1990). Heat pump assisted continuous drying part 2:
Simulatıon results, International Journal of Energy Research. (14), 771-782.
13. Jolly, P., Jia, X., Clements, S. (1990). Heat pump assisted continous drying part 1:
sımulation model, International Journal of Energy Research, (14), 757-770.
14. Lee, K.H., Kim, O.J. (2009). Investigation on drying performance and energy
savings of the batch-type heat pump dryer, Drying Technology, 27(4), 565 – 573.
15. Moffat, R.J.(1988). Describing the uncertainties in experimental results,
Experimental Thermal and Fluid Science, 13-17.
16. Ogura, H., Yamamoto, T., Otsubo, Y., Ishida, H., Kage, H., Mujumdar, A.S.
(2005). A control strategy for chemical heat pump dryer, Drying Technology, (23),
1189–1203.
17. Oktay, Z. (2003). Testing of a heat-pump-assisted mechanical opener dryer,
Applied Thermal Engineering, (23), 153–162.
18. Prasertsan, S. and Saen-saby, P., (1998). Heat pump drying of agricultural
materials, Drying Technology, 16 (1&2), 235-250
19. Qi-Long S., Chang-Hu X., Ya Z., Zhao-Jie L., Xiang-You W., (2008). Drying
characteristics of horse mackerel (Trachurus japonicus) dried in a heat pump
dehumidifier, Journal of Food Engineering, (84), 12–20
20. Tai, K.W., Devotta, S., Watson, R.A., Holland, F.A., (1892). The potential for heat
pumps in drying and dehumidification systems – III: an experimental assessment of
the heat pump characteristics of a heat pump dehumidification system using R114,
International Journal of Energy Research, (6), 333–340.
21. Teeboonma, U., Tiansuwan, J., Soponronnarit, S. (2003). Optimization of heat
pump fruit dryers, Journal of Food Engineering, (59), 369–377.

Thank you for copying data from http://www.arastirmax.com