You are here

PORTFÖY SEÇİMİNDE MARKOWITZ MODELİ İÇİN YENİ BİR GENETİK ALGORİTMA YAKLAŞIMI

A NEW GENETIC ALGORITHM APPROCH FOR MARKOWITZ MODEL OF PORTFOLIO SELECTION

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Portfolio selection assumed as one of the most important research areas in modern finance, is the decision of forming the optimum portfolio from a list of securities under certain expectations and constraints. Solution of this kind of problem is difficult on account of large number of complex data and constraints of decision making. Conventional and modern portfolio management models were tried to be solved with various solution techniques and under different constraints. The method mentioned with the name of Markowitz who is the founder of modern portfolio management, provided a new dimension to portfolio selection. Risk, like return, gained a quantitative meaning and became measurable. Several studies were made on the model which can also be defined as Markowitz mean-variance method. Additions are made to the model and the solution process is tried to be improved by different algortihms. In this article, a new genetic algorithm approach for Markowitz model of portfolio selection is attempted and the solutions are discussed. Furthermore, the codes of Matlab 7.0 programme where the model is evolved are also mentioned.
Abstract (Original Language): 
Modern finansın en önemli araştırma alanlarından biri olarak kabul edilen portföy seçimi, belirli beklenti ve kısıtlar altında, menkul kıymetler havuzundan en uygun olan kümenin oluşturulması kararıdır. Verilerin çokluğu ve karmaşıklığı, karar vericinin kısıtları gibi nedenlerle çözümü zor bir problemdir. Geleneksel ve modern portföy yönetimi modelleri, farklı kısıtlar ve çözüm teknikleri kullanılarak çözülmeye çalışılmıştır. Modern portföy yönetiminin kurucusu sayılan Markowitz‟ in kendi adıyla anılan yöntemi, portföy seçimine yeni bir boyut kazandırmıştır. Risk, getiri gibi sayısal anlam kazanmış ve ölçülebilir olmuştur. Markowitz ortalama -varyans metodu olarak da tanımlanabilecek model hakkında bir çok çalışma yapılmıştır.Modele eklentiler yapılmış ve çözüm süreci farklı algoritmalarla iyileştirilmeye çalışılmıştır. Bu makalede, portföy seçiminde Markowitz modeli için yeni bir genetik algoritma yaklaşımı denenmiş ve sonuçlar tartışılmıştır. Ayrıca modelin geliştirildiği Matlab 7.0 programındaki kodlara da yer verilmiştir.
78-90

REFERENCES

References: 

1. NEARCHOU, Andreas C., 2003, “The effect of
various operators on the genetic search for
large scheduling problems”, Production
Economics, Vol: 88, No:2, s:191-203.
2. CEYLAN, A., KORKMAZ, T., 2004, Sermaye
Piyasası ve Menkul Değer Analizi, İstanbul,
Ekin Kitabevi.
3. CHANG, T.J., MEADE, N., BEASLEY, J.E.,
SHARAIHA, Y.M., 2000, “Heuristics for
cardinality constrained portfolio optimisation”,
Computers&Operations Research Vol: 27,
s:1271-1302.
4. CRAMA, Y., SCHYNS, M., 2003, “Simulated
annealing for complex portfolio selection
problems”, European Journal of Operational
Research Vol: 150, s:546–571
5. FERNÁNDEZ, A., GÓMEZ, S., Baskıda,
“Portfolio selection using neural networks”,
Computers & Operations Research.
6. GOLDBERG, D.E., 1989, Genetic algorithms in
search optimization and machine learning,
Addison Wesley Publishing Company, USA
7. KESKİNTÜRK, T.,AKÇAY, Ö., 2005, “An order
encoding genetic algorithm for lot-sizing
problem with multiple suppliers”, Proceedings
of the 2005 International Conference on
Computers and Industrial Engineering, s.
1135-1140.
8. MARKOWITZ, H.M., 1952, “Portfolio selection”,
Journal of Finance, Vol: 7, s:77-91.
9. MARKOWITZ, H.M., 1959, Portfolio Selection:
Efficient Diversification of Investments, New
York, Wiley.
10. MICHALEWICZ, Z., 1992, Genetic algorithms +
Data structure = Evolution programs,
Berlin, Springer-Verlag.
11. OBITKO, M., 1998, Genetic Algorithms,
(Çevrimiçi), http://cs.felk.cvut.cz/~xobitko/ga/
Hochschule für Technik und Wirtschaft
Dresden (FD).
12. ÖZDEMİR, E., 1983, Nonlineer Programlama
Çözüm Yöntemleri ve Portföy Seçimi
Problemine Uygulanması, Doktora Tezi,
İstanbul.
13. ÖZDEMİR, E., GİRESUNLU, İ.M., 2004, “The
selection of risky stock portfolios based on the
risk aversion constant”, Azerbaycan
Respublikası Tahsil Cemiyeti Bilgi Dergisi,
No:2 (18), s:61-66.
14. REEVES, C.R., 1995, Modern heuristic
techniques for combinatorial problems,
McGraw-Hill Book Company Inc., Europe.
15. SARKER, R., NEWTON, C., 2002, “A genetic
algorithm for solving economic lot size
scheduling problem”, Computer & Industrial
Engineering, Vol: 12, No:5, s:195-196.
90
16. XIA, Y., LIU, B., WANG, S., LAI, K., 2000, “A
model for portfolio selection with order of
expected returns” Computers & Operations
Research, Vol: 27, s:409–422.

Thank you for copying data from http://www.arastirmax.com