[1] Gelfand, I. M. and Levitan B.M. “On a simple identity for the eigenvalues of a differential
operatör if the second order” Dokl. Akad. Nauk SSSR, M.T. 88, No:4, 593-596 (1953).
[2] Sadovnichi V.A., Trace formulas of the higher order differential operators, Matem.sb.
T.72, vıp.2, 293-317 (1967).
[3] Levitan, B.M. and Sargasyan, I.S., Sturm-liouville and Dirac Operators, Kluwer,
Dordrecht, (1991).
[4] Sadovnichi V.A. Theory of Operators, Consultants Bureau, New-York, 1991.
[5] Fulton, C.T. and Pruesses, S. “Eigenvalue and eigenfunctions asymptotics for reguler
Sturm-Liouville problems, J. Math. Anal. Appl. 188, 297-340 (1994).
[6] Bayramoğlu, M. and Adıgüzelov, E.E. “On a regularized trace formula for the Sturmliouville operator with a bounded operator coefficient and with a singularity. Differential
Equations, no.12, 1581-1585 (1997).
[7] Albayrak I., Bayramoğlu M. and Adıgüzelov, E.E. “The second regularized trace formula
for the Sturm-Liouville problem with spectral parameter in a boundary condition.
Methods of Functional Analysis and Topology V.6, No:3, 1-8, (2000).
[8] Albayrak, I., Baykal, O. and Gul E., “Formula for the Highly Regularized Trace of the
Sturm-Liouville Operator with Unbounded Operator Coefficients Having Singularity,
Turk J Math 25 (2001), 307-322.
[9] Adıgüzelov, E.E., Avcı, H. and Gul E. The trace formula for Sturm-Liouvile operator with
operator coefficient. J. Math. Phys. Vol.42, 1611-1624 No:6, (2001).
[10] Adıgüzelov, E.E. Baykal O., Bayramov A., On the spectrum and regularized trace of the
Sturm-Liouville problem with spectral parameter on the boundary condition and with the
operator coefficient, International Journal of differential equations and applications, V:2,
no:3, page 317-333 (2001).
[11] Adıgüzelov, E.E. and Bakşi Ö. On the regularized trace of the differential operator
equation in a finite interval, Sigma Journal of Engineering and Natural Sciences Issue 1
(2004).
[12] Dikii, L.A. About a formula of Geltand-Levitan, Usp. Math. Nauk, 8(2), 119-123 (1953).
[13] Naimark, M.A. Linear differential operators, part I. Harrap, London (1968).
Thank you for copying data from http://www.arastirmax.com