Buradasınız

Aşırı Konsolide Kil Zeminlerdeki Yanal Yüklü Kazıklar için Limit Durum Moment Fonksiyonları

Limit State Moment Functions for Laterally Loaded Single Piles in Local OC Clay

Journal Name:

Publication Year:

Abstract (2. Language): 
Performance level of piles is usually expressed with the maximum head deflection and bending moment. Uncertainties in the performance of a pile originates from many factors such as spatial variation of soil properties, inadequate soil investigations, errors taking place in the determination of soil parameters by various testing methods, and limited calculation models. These uncertainties make it difficult for practicing engineers to effectively select the appropriate method when designing laterally loaded piles. In this study, the conventional, numerical, two and three dimensional finite element solutions of free head loading conditions are analyzed for determining the maximum deflection and moment of a laterally loaded single concrete pile in a homogenous fully saturated overcon-solidated local cohesive soil. The local clay has PI and OCR values of 35 and 6.1, respectively. While developing limit state functions via response surface method, maximum bending moment data under service load condition computed using 3D finite element analysis, which better represents the three dimensional nature of the soil-structure interaction, was used by considering the pile rigidity.
Abstract (Original Language): 
Kazıkların performans düzeyleri genellikle maksimum kazık başı deplasmanı ve maksimum eğilme momenti ile ifade edilir. Kazık performansındaki belirsizlikler; zemin özelliklerindeki bölgesel değişiklikler, yetersiz zemin etüd çalışmaları, zemin parametrelerinin belirlenmesinde farklı deney yöntemlerinden oluşabilecek hatalar ve sinirli hesap modelleri gibi etkenlerden kaynaklanabilmek-tedir. Bu belirsizlikler, uygulamacı mühendislerin yanal yüklü kazık dizaynı için kullanacakları uygun yöntemi seçebilmesini zorlaştırmaktadır. Bu çalışmada, suya doygun homojen aşırı konsolide yerel bir kil zemindeki serbest başlı kazıkların yanal yükler altında maksimum kazık başı deplasmanı ve maksimum eğilme momenti değerlerini belirlemek için yapılmış olan konvansiyonel, sayısal ve iki ve üç boyutlu sonlu elemanlar analizleri gerçekleştirilmiştir. Yerel kil zeminin plastisite indisi ve aşırı kon-solidasyon oranı değerleri sırası ile 35 ve 6.1 dir. Tepki yüzeyi yöntemi ile limit durum fonksiyonları geliştirilirken, servis yükleri altında kazığın üç boyutlu davranışını daha iyi yansıtan üç boyutlu sonlu elemanlar analizi ile kazık rijitliği dikkate alınarak belirlenen maksimum moment değerleri kullanılmıştır.
405
416

REFERENCES

References: 

Briaud, J. L., and Smith, T. D. 1983. "Using the Pres-suremeter Curve To Design Laterally Loaded Piles'; Proc., 15th Offshore Technology Conf., Houston, USA, Paper. 4501, 495-502.
Brinch Hansen, J. 1961. "The Ultimate Resistance of Rigid Piles against Transversal Forces', Danish Geo-technical Institute Bulletin, Copenhagen, Denmark. (12), 5-9.
Brinkgreve, R.B.J. and Broere W. 2006. Plaxis 3D Foundation Manual. Delft University of Technology & PLAXIS bv, The Netherlands.
Broms, B.B. 1964. Lateral resistance of piles in cohe¬sive soils. Journal of Soil Mechanics and Foundation Division. ASCE. 90 (2), 27-63.
Duncan, J. M., and Buchignani, A. L. 1976. An Engi¬neering Manual for Settlement Studies. Department of Civil Engineering, University of California at Berke¬ley.
Fleming, W.G. K., Weltman, A. J., Randolph, M. F., El-son, W. K. 1994. Piling Engineering, 2nd Ed., Taylor &Francis.
Pamukkale
Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 15, Sayı 3, 2009
415
G. Imançlı, M. R. Kahyaoğlu and G. Özden
Hannigan, P.J., Goble, G.G.,
Thendean
, G., Likins, G.E., and Rausche, F. 1998. Design and Construction of Driven Pile Foundation. Workshop Manual Volume I, Technical Report No: FHWA/HI-97-013, US Department of Transportation Federal Highway Administration, Office of Technology Application, Office of Engineering/Bridge Division, Washington, D.C.
Hsuing, Y. 2003. Theoretical elastic-plastic solution for laterally loaded piles. Journal of Geotechnical and Geoenvironmental Engineering, ASCE. (129),
475-480.
Kayalar, A.Ş., Özden, G. ve Ceylan, H. 1991. "Gaziemir (İzmir) Yöresi Zeminlerin Geoteknik Özellikleri", İnşaat Mühendisliğinde Zemin Sempozyumu.
Mahadevan, S
and Shi, P. 2001. Multiple linearization method for nonlinear reliability analysis. Journal of Engineering Mechanics, ASCE. 127 (11), 1165-1173.
Matlock, H. 1970. Correliations for Design of Later¬ally Loaded Piles in Soft Clay. Proceedings of the II Annual Offshore Technology Conference, Houston,
Texas (OTC 1204), 577-594.
Mindlin, R.D. 1936. Force at a point in the interior of a semi-infinite solid. Physics. Vol. 7, pp. 195.
Murthy, V.N.S., and Subba Rao, K.S. 1995. Prediction of Nonlinear Behavior of Laterally Loaded Long Piles. Foundation Engineer, New Delhi, Vol. 1 (2).
Myers, R.H. and Montgomery, D.C. 2002. Response Surface Methodology, 2nd ed., John Wiley&Sons,
INC.
Nogami, T., Otani J., Konagai, K., and Chen, H. L. 1992. Nonlinear Soil-Pile Interaction Model for Dynamic Lateral Motion. Journal of Geotechnical Engineering, ASCE. 118 (1), 89-106.
Park, J.K., Blackburn, J.T., Gardoni, P. 2007. Reliability Assessment of Excavation Systems Considering Both
Stability and Serviceability Performance. Georisk, 1 (3), 123-141.
Poulos, H.G. 1971. Behavior of laterally loaded piles. I: Single Piles. Journal of Soil Mec. and Found. Div.,
ASCE. 97 (5), 711-731.
Prakash, S. and Sharma, H. D. 1990. Pile Foundations in Engineering Practice. John Willey and Sons, Inc.
Pula, W. 2007. Reliability of Laterally Loaded Rigid Piles. Probabilistic Methods in Geotechnical Engi¬neering, CISM Courses and Lectures, Springer Wien New York, No: 491, 169-183.
Randolph, M. F. 1981. The Response of Flexible Piles to Lateral Loading. Geotechnique, 31 (2), 247-259.
Reese, L.C. 1985. Behavior of Piles and Pile Groups under Lateral Load. Technical Report No: FHWA/RD-85/106, Federal Highway Administration, Office of Engineering and Highway operations, Research and Development, Washington, D.C.
Reese, L.C. and Wang, S.T. 1996. Group 4.0 for Win¬dows, Analysis of a group of piles subjected to axial and lateral loading, Ensoft, Inc., Austin, Tex.
Tand, K.E. and Vipulanandan, C. 2008. "Comparison of Computed vs. Measured Lateral Load/Deflection Response of ACIP Piles', Plaxis Bulletin, Delft, Netherlands. (23), 6-9.
Tandjiria, V., Teh, C.I., Low, B.K. 2000. Reliability analy¬sis of laterally loaded piles using response surface methods. Structural Safety. (22), 335-355.
Wang, S. T., and Reese, L. C. 1993. COM624P-Laterally Loaded Pile Analysis Program for Microcomputer. version 2.0, Final Report FHWA-IP-90-005, Federal Highway Administration, Washington, D.C.
Winkler, E. 1867. Die Lehre von der Elastizitat und Festigkeit. Prag. 182.

Thank you for copying data from http://www.arastirmax.com