Buradasınız

SONLU ELEMANLAR YÖNTEMİNİ KULLANARAK İKİ-BOYUTLU YAPILARIN ÖZDİRENÇ İLERİ MODELLEMESİ

THE RESISTIVITY FORWARD MODELING OF TWO-DIMENSIONAL FEATURES USING THE FINITE ELEMENT METHOD

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
The greatest limitation of the one-dimensional resistivity modeling is that does not take into account horizontal changes in the subsurface resistivity. To obtain a more accurate model of the subsurface, two-dimensional (2-D) modeling consisting of the resistivity changes in the vertical and the horizontal direction along the survey line must be done. In this case, it is assumed that resistivity does not change in the direction that is perpendicular to the survey line. In this study, the basic theory of the finite element method (FEM) from numerical modeling techniques is presented as two-dimensional resistivity forward modeling technique and the subsurface mesh needed for the modeling is examined. The models used in the study represent an archaeological feature. A finite element mesh with 103x19 nodes was designed to calculate the dipole-dipole apparent resistivity model responses of the 2-D models. The results of forward modeling differ from the true resistivity by approximately 2 percent for N=1 level while less than 0.5 percent for the other levels. The apparent resistivity values produced with the forward modeling are presented as pseudo-sections and they give a very approximate picture of the true subsurface resistivity distribution. The model response (result of forward modeling) can be used as an initial guide for the inversion.
Abstract (Original Language): 
Bir-boyutlu özdirenç modellemesinin en büyük sınırlaması yeraltı özdirencinin yanal değişimlerini hesaba katmamasıdır. Yeraltının daha doğru bir modeline ulaşmak için, bir hat boyunca yanal ve düşey yönde özdirenç değişimlerini dikkate alan ikiboyutlu (2-B) modelleme yapılmalıdır. Bu durumda özdirencin araştırma hattına dik olan yönde değişmediği düşünülür. Bu çalışmada, 2-B özdirenç modelleme için sayısal modelleme tekniklerinden sonlu elemanlar yönteminin (SEY) temel kuramı sunulmaktadır ve modelleme için ihtiyaç duyulan yeraltı ağı irdelenmektedir. Çalışmada bir arkeolojik yapıyı temsil edebilecek türde modeller kullanılmıştır. 2-B modellerin dipol-dipol görünür özdirenç model tepkilerini hesaplamak için 103x19 düğümlü bir sonlu elemanlar ağı kurulmuştur. Modelleme sonuçları gerçek özdirençten N=1 seviyesinde yaklaşık %2 ve diğer seviyelerde ise %0.5’den daha az farklıdır. İleri modelleme ile hesaplanan görünür özdirenç değerleri andıran kesitler olarak sunulur ve yeraltı özdirenç dağılımının yaklaşık resmini verir. Bu model tepkisi (düz çözüm sonucu) ters çözüm için bir başlangıç rehberi olarak kullanılır.
37-45

REFERENCES

References: 

Bibby, H. M., 1978, Direct current resistivity modeling
for axially symmetric bodies using the finite element
method, Geophysics, 43, 3, 550-562.
Chandrupatla, T.R., and Belegundu, A.D., 1991,
Introduction to finite elements in engineering,
Prentice Hall, New Jersey, 414 p.
Coggon, J.H., 1971, Electromagnetic and electrical
modeling by the finite element method, Geophysics,
36, 1, 132-155.
Chunduru, R.K., Nagendra, R., and Patangay, N.S.,
1991, A Fortran program for computing apparent
resistivity over an infinitely deep outcropping
vertical dike, Computers & Geosciences, 17, 10,
1395-1408.
Dey, A. and Morrison, H.F., 1979, Resistivity
modeling for arbitrary shaped two-dimensional
structures, Geophysical Prospecting, 27, 1020-1036.
Dittmer, J.K., and Szymanski, J.E., 1993, The
forward modeling of resistive two-dimensional
features using the finite element method,
Geophysical Exploration of Archaeological Sites,
Edit by Andreas Vogel, Vieweg Publishing, 7, 103-
122.
Griffiths, D.H., and Barker, R.D., 1993, Twodimensional
resistivity imaging and modeling in
areas of complex geology, Journal of Applied
Geophysics, 29, 211-226.
Hohmann, G.W., 1975, Three-dimensional induced
polarization and electromagnetic modeling,
Geophysics, 40, 2, 309-324.
Lee, T., 1972, A general technique for the direct
interpretation of resistivity data over twodimensional
structures, Geophysical Prospecting, 20,
847-859.
Lee, T., 1975, An integral equation and its solution for
some two- and three-dimensional problems in
resistivity and induced polarization, Geophys. J. R.
astr. Soc., 42, 81-95.
Loke, M.H., 2001, Two-dimensional and threedimensional
electrical imaging surveys,
http://www.geoelectrical.com.
Mufti, I.R., 1976, Finite-difference resistivity modeling
for arbitrarily shaped two-dimensional structures,
Geophysics, 41, 1, 62-78.
Mufti, I.R., 1978, A practical approach to finitedifference
resistivity modeling, Geophysics, 43, 5,
930-942.
Mundry, E., 1984, Geoelectrical model calculations for
two-dimensional resistivity distributions,
Geophysical Prospecting, 32, 124-131.
Pelton, W.H., Rijo, L., Swift, C.M, 1978, Inversion of
two-dimensional resistivity and induced polarization
data, Geophysics, 43, 4, 788-803.
Pridmore, D.F., Hohmann, G.W., Ward, S.H., and
Sill, W.R., 1981, An investigation of finite-element
modeling for electrical and electromagnetic data in
the three dimensions, Geophysics, 46, 7, 1009-1024.
Queralt, P., Pous, J., and Marcuello, A., 1991, 2-D
resistivity modeling: an approach to arrays parallel
to the strike direction, Geophysics, 56, 7, 941-950.
Rijo, L., 1977, Modeling of electric and
electromagnetic data, Ph.D. Thesis, University of
Utah, Salt Lake City, 242 p.
Sasaki, Y., 1982, Automatic interpretation of induced
polarization data over two-dimensional structures,
Memoirs of the Faculty of Engineering, Kyushu
University, 42, 1, 59-74.
Sasaki, Y., 1994, 3-D resistivity inversion using the
finite element method, Geophysics, 59, 11, 1839-
1848.
Tripp, A.C., Hohmann, G.W., and Swift, C.M., Jr.,
1984, Two-dimensional resistivity inversion,
Geophysics, 49, 10, 1708-1717.
Tsokas, G., Tsourlos, P., and Szymanski, J., 1997,
Square array resistivity anomalies and
inhomogeneity ratio calculated by the finite element
method, Geophysics, 62, 2, 426-435.
Zang, J., Mackie, R., and Madden, T., 1995, 3-D
resistivity forward modeling and inversion using
conjugate gradients, Geophysics, 60, 1313-1325.
Zhao, S., and Yedlin, M.J., 1996, Some refinements of
the finite-difference method for 3-D dc resistivity
modeling, Geophysics, 61, 5, 1301-1307.
Zhou, B., and Greenhalgh, S.A., 2001, Finite element
three-dimensional direct current resistivity
modeling: accuracy and efficiency consideretions,
Geophys. J. Int., 145, 679-688.

Thank you for copying data from http://www.arastirmax.com