Buradasınız

KARE KESİTLİ HELİSEL KANALDA TÜRBÜLANSLI AKIŞTA BASINÇ DÜŞÜŞÜNÜN DENEYSEL VE NÜMERİK ANALİZİ

THE EXPERIMENTAL AND NUMERICAL ANALYSIS OF TURBULENT FLOW PRESSURE DROP OF HELICAL SQUARE DUCT

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In this study, the pressure drop of helical square duct which has 8x8 mm dimension, a pitch of b =12 mm was investigated both experimentally and numerically with the similar experimental boundary conditions. SIMPLE algorithm, PRESTO pressure-velocity interpolation option, RNG k-e turbulent model and Gauss Siedel iteration method were used in numerical computations which were done by FLUENT® programme. As a result it was understood that the maximum difference between numerical and experimental data is about 5 %. The experimental and numerical results were compared and validated with the results in the literature.
Abstract (Original Language): 
Bu çalışmada 8 x 8 mm kare kesitli, 12 mm hatveli helisel kanalda basınç düşüşü deneysel olarak tespit edilerek benzer sınır şartlarında bilgisayarda nümerik çözüm yapılmıştır. Nümerik çözüm FLUENT® programı ile SIMPLE çözüm algoritması, PRESTO basınç-hız enterpolasyon yöntemi, RNG k-e türbülans modeli ve Gauss Siedel iterasyon metodu kullanılarak yapılmıştır. Nümerik ve deneysel veriler arasında en fazla % 5 gibi bir fark vardır. Deneysel ve nümerik sonuçlar literatürde yayınlanmış çözümler ile karşılaştırılarak valide edilmiştir.
283
289

REFERENCES

References: 

Anonymous, 1998. Fluent® User's Guide. Fluent® Incorporated Centerra Resource Park, Lebanon.
Bolinder, C.J. 1995. The Effect of Torsion on the Bifurcation Structure of Laminar Flow in a Helical Square Duct Transections of the ASME . 117, 242¬248.
Butuzow, A.I., Bezrodnyy, M.K., Pustovit, M.M:, 1975. Hydroulic Resistance and Heat Transfer in Forced Flow in Rectangular Coiled Tubes, Heat
Transfer Sov. Res. 7-4, 84-88.
Ito, H. 1959. Friction Factors for Turbulent Flow in Curved Pipes, J. Basic Eng., Vol. 81, pp.123-134.
Kadambi, V. 1983. Heat Transfer and Pressure Drop in a Helically Coiled Rectangular Duct, ASME Paper, No 83-WA/HT-1
Kaya, O. 2002. Plastik Boru Ekstrüder
Kalibrelerinde Isı Transferinin İyileştirilmesi, Doktora Tezi. Yıldız Teknik Üniversitesi, İstanbul.
Kubair, V., Varrier, C.B.S. 1961. Pressure Drop for
Liquid Flow in Helical Coils, Trans. Indian Inst. Chem. Eng. 14, 93-97.
Li, L. J., Lin, C. X., Ebadian, M. A. 1998. Turbulent Mixed Convective Heat Transfer in the Entrance Region of a Curved Pipe with Uniform Wall Temperature, Int. J. Heat and Mass Transfer. (41),
3793-3805.
Lin, C. X., Zhang, P., Ebadian, M. A. 1997. Laminar Forced Convection in the Entrance Region of Helical Pipes, Int. J. Heat Mass Transfer. 40 (14), 3293-3304.
Mishra,
P.
, Grupta, S. N. 1979. Momentum Transfer in Curved Pipes, Ind. Eng. Chem. Process Des. Dev.
18, 130-142.
Mori, Y., Nakayama, W. 1965. Study on Forced Convective Heat Transfer in Curved Pipes, Int. J.
Heat Mass Transfer. 8, 67-82.
Patankar, S.V., Pratap, V. S., Spalding, D.B. 1974. Prediction of Laminar Flow and Heat Transfer in
Helically Coiled Pipes, J. Fluid Mech. 62, 539-551.
Srinivasan, P. S., Nandapurkar, S. S., Holland, F. A. 1968. Pressure Drop and Heat Transfer in Coils, The Chem. Eng. (London). 218, 113-119.
Thangam, S., Hur, N. 1990. Laminar Secondary Flows in Curved Rectangular Ducts, Journal of Fluid
Mechanics. 217, 421-440
Thomson, D. L., Bayazıtoğlu, Y., Meade, A. J. 2001. Series Solution of Low Dean and Germano Number Flows in Helical Rectangular Ducts, Int. J. Therm.
Sci. 40, 937-948
Yang, G., Gong, F., Ebadian, M. A. 1995. Laminar Forced Convection in a Helicoidal Pipe with Finite
Pitch, Int. J. Heat Mass Transfer. 38 (5), 853-862.
Yakhot, V., Orzag, S.A. 1986. Renormalization Group Analysis of Turbulance, J. Of Scientific Computing 1: 3.

Thank you for copying data from http://www.arastirmax.com