Buradasınız

HİPERBOLİK PROFİLLİ DAİRESEL KANATLARIN PERFORMANS ANALİZİ VE OPTİMİZASYONU

PERFORMANCE ANALYSIS AND OPTIMIZATION OF HYPERBOLIC PROFILE ANNULAR FINS

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
The optimization of hyperbolic profile annular fins with variable thermal conductivity is performed based on one-dimensional heat transfer analysis. The homotopy analysis method (HAM) is used to solve the nonlinear one-dimensional heat transfer equation which is associated with variable thermal conductivity condition and obtained the temperature distribution within the fin. Since the HAM algorithm contains a parameter that controls the convergence and accuracy of the solution, its results can be verified internally by calculating the residual error. The fin efficiency of hyperbolic profile annular fins is obtained as a function of three problem parameters: thermo-geometric fin parameter, thermal conductivity parameter describing the variation of thermal conductivity and radii ratio. Since the efficiency expression is very complicated, the data from the present solutions is correlated for fin efficiency. Employing this correlation equation in optimization calculations, it has obtained fin geometry which maximizes the heat transfer rate for giving thermal conditions.
Abstract (Original Language): 
Bu çalışmada, ısı iletim katsayıları sıcaklıkla değişen hiperbolik profile sahip dairesel kanatlar, bir-boyutlu ısıl analiz ile optimize edilmiştir. Isı iletim katsayısının değişken olması yüzünden doğrusal olmayan tek boyutlu kanat denklemi, yarı-analitik bir metot olan homotopi analiz metodu (HAM) ile çözülerek kanat içindeki sıcaklık dağılımı elde edilmiştir. HAM algoritması, çözümün yakınsaklığı ve hassaslığını kontrol eden bir parametre içerdiğinden, sayısal yöntemden kaynaklanan hatanın minimize edilmesi mümkündür. Bu çözüm yardımıyla kanat verimi hesaplanmış, ancak bulunan ifadenin çok karmaşık olmasından dolayı kanat verimi, geometrik ve ısıl problem parametrelerinin fonksiyonu olarak bir korelasyon denklemi ile ifade edilmiştir. Bu korelasyon denklemi optimizasyon hesaplarında kullanılarak, verilen ısıl koşullarda ısı geçişini maksimum yapan kanat geometrisi belirlenmiştir.
743
780

REFERENCES

References: 

1. Kraus, A.D., Aziz, A., ve Welty, J.R., Extended
Surface Heat Transfer, McGraw-Hill, New
York, 2001.
2. Campo, A. ve Cui, J., “Temperature/heat
analysis of annular fins of hyperbolic profile
relying on the simple theory for straight fins of
uniform profile”, Journal of Heat Transfer,
Cilt 130, 054501, 2008.
3. Mokheimer, E. M.A., “Performance of annular
fns with different profiles subject to variable
heat transfer coefficient”, International
Journal of Heat and Mass Transfer, Cilt 45,
No 17, 3631-3642, 2002.
4. Laor, K. ve Kalman, H., “Performance and
optimum dimensions of different cooling fins
with a temperature dependent heat transfer
coefficient”, International Journal of Heat
and Mass Transfer, Cilt 39, No 9, 1993-2003,
1996.
5. Kundu, B. ve Das P.K., “Performance analysis
and optimization of straight taper fins with
variable heat transfer coefficient”,
International Journal of Heat and Mass
Transfer, Cilt 45, No 24, 4739-4751, 2002.
6. Arauzo, I., Campo, A ve Cortes, C., “Quick
estimate of the heat transfer characteristics of
annular fins of hyperbolic profile with the
power series method”, Applied Thermal
Engineering, Cilt 25, No 4, 623-634, 2005.
7. Diez, L.I., Campo, A. ve Cortes, C., “Quick
design of truncated pin fins of hyperbolic
profile for heat-sink applications by using
shortened power series”, Applied Thermal
Engineering, Cilt 29, No 5-6, 815-821, 2009.
8. Yu,L.T. ve Chen, C.K., “Optimization of
circular fins with variable thermal parameters”,
Journal of the Franklin Institute, Cilt 336, No
1, 77-95, 1999.
9. Arslanturk, C., “A decomposition method for
fin efficiency of convective straight fins with
temperature-dependent thermal conductivity”,
International Communications in Heat and
Mass Transfer, Cilt 32, No 6, 831-841, 2005.
10. Arslanturk, C., “Correlation equations for
optimum design of annular fins with
temperature dependent thermal conductivity”,
Heat and Mass Transfer, Cilt 45, No 4, 519-
525, 2009.
11. Coşkun, S.B. ve Atay, M.T., “Fin efficiency
analysis of convective straight fins with
temperature dependent thermal conductivity
using variational iteration method”, Applied
Thermal Engineering, Cilt 28, No 17-18,
2345-2352, 2008.
12. Inc, M., “Application of homotopy analysis
method for fin efficiency of convective straight
fins with temperature-dependent thermal
conductivity”, Mathematics and Computers
in Simulation, Cilt 79, No 2, 189-200, 2008.
13. Domairry, G. ve Fazeli, M., “Homotopy
analysis method to determine the fin efficiency
of convective straight fins with temperaturedependent
thermal conductivity”,
Communications in Nonlinear Science and
Numerical Simulation, Cilt 14, No 2, 489-499,
2009.
14. Joneidi, A.A., Ganji, D.D. ve Babaelahi, M.,
“Differential transformation method to
determine fin efficiency of convective straight
fins with temperature dependent thermal
conductivity”, International Communications
in Heat and Mass Transfer, Cilt 36, No 7,
757-762, 2009.
15. Malekzadeh, P., Rahideh, H. ve Setoodeh, A.R.,
“Optimization of non-symmetric convectiveradiative
annular fins by differential quadrature
method”, Energy Conversion and
Management, Cilt 48, No 5, 1671-1677, 2007.
16. Yang, Y.T., Chang, C.C. ve Chen C.K., “A
double decomposition method for solving the
annular hyperbolic profile fins with variable
thermal conductivity”, Heat Transfer
Engineering, Cilt 31, No 14, 1165-1172, 2010.
C. Arslantürk Hiperbolik Profilli Dairesel Kanatların Performans Analizi ve Optimizasyonu
480 Gazi Üniv. Müh. Mim. Fak. Der. Cilt 27, No 3, 2012
17. Liao, S.J., “The proposed homotopy analysis
technique for the solution of nonlinear
problems”, PhD thesis, Shanghai Jiao Tong
University, 1992.
18. Liao, S.J., “Beyond perturbation: introduction to
the homotopy analysis method”, Chapman &
Hall/CRC Press, Boca Raton, 2003.
19. Liao, S.J., “On the homotopy analysis method
for nonlinear problems”, Applied Mathematics
and Computation, Cilt 147, No 2, 499–513,
2004.
20. Khani, F., Raji, A.M. ve Nejad, S.H., “A series
solution of the fin problem with a temperaturedependent
thermal conductivity”,
Communications in Nonlinear Science and
Numerical Simulation, Cilt 14, No 7, 3007–
3017, 2009.
21. Khani, F., Raji, A.M. ve Nejad, S.H., “
Analytical solution and efficiency of the
nonlinear fin problem with temperaturedependent
thermal conductivity and heat
transfer coefficient”, Communications in
Nonlinear Science and Numerical
Simulation, Cilt14, No 8, 3327–3338, 2009.
22. Sajid, M., Ahmad, I., Hayat, T. ve Ayub, M.,
“Unsteady flow and heat transfer of a second
grade fluid over a stretching sheet”,
Communications in Nonlinear Science and
Numerical Simulation, Cilt 14, No 1, 96–108,
2009.
23. Ascher, U. ve Petzold, L., Computer Methods
for Ordinary Differential Equations and
Differential-Algebraic Equations, SIAM,
Philadelphia, 1998.
24. Incropera, F.P. ve DeWitt, D.P., Introduction to
Heat Transfer, Wiley, New York, 1993.

Thank you for copying data from http://www.arastirmax.com