Buradasınız

İSTATİSTİKSEL ÖZELLİK TEMELLİ BAYES SINIFLANDIRICI KULLANARAK KONTROL GRAFİKLERİNDE ÖRÜNTÜ TANIMA

CONTROL CHART PATTERN RECOGNITION USING STATISTICAL-FEATURE BASED BAYES CLASSIFIER

Journal Name:

Publication Year:

Abstract (2. Language): 
Shewhart control charts for statistical process control are important tools to examination abnormal changes in a process. Artificial Neural Networks and Bayesian pattern recognition systems are formed to identify patterns of abnormal changes in a process to identify changes that may occur over time, to keep a process under control and to take necessary actions in a process. Classification performance of the generated pattern recognizers was measured. Six statistical features are issued from observations, that patterns were created, and classification performances were compared to improve the performance of correct classification. It is observed that Artificial Neural Networks and Bayesian pattern recognizers have higher performance after related features are defined. In conclusion, it is concluded that Bayesian pattern recognizer has better classification performance than artificial neural networks. Bayesian classifier can be used in real-time control charts for pattern recognition applications.
Abstract (Original Language): 
İstatistiksel süreç kontrolünde kullanılan Shewhart kontrol grafikleri, süreçteki anormal değişimleri incelemede önemli bir araçtır. Süreçte zaman içinde oluşabilecek değişimlerin tespit edilmesi, sürecin kontrol altında tutulması ve önlemlerin alınması amacıyla süreçteki anormal değişimlerin örüntülerini tanımlamaya yönelik Yapay Sinir Ağları ve Bayes örüntü tanıma sistemleri oluşturulmuştur. Oluşturulan örüntü tanıyıcılarının sınıflandırma performansları ölçülmüştür. Doğru sınıflandırma performansını artırmak için örüntüleri oluşturan gözlem değerlerinden, altı adet istatistiksel özellik çıkarılmış ve sınıflandırma performansları karşılaştırılmıştır. yapay sinir ağları ve Bayes örüntü tanıyıcılarının, ilgili özellikler tanımlandıktan sonra daha yüksek performans verdiği görülmüştür. Sonuç olarak, Bayes örüntü tanıyıcının yapay sinir ağlarına nazaran daha iyi sınıflandırma performansının olduğu sonucuna varılmıştır. Bayes sınıflandırıcı gerçek zamanlı kontrol grafikleri uygulamalarında örüntü tanıma amaçlı kullanılabilir.
303
311

REFERENCES

References: 

1. Shewhart W.A., Economic Control of Quality of
Manufactured Product. New York: Van
Nostrand, 1931.
2. Bozkurt, R. Kalite İyileştirme Araç ve
Yöntemleri (İstatistiksel Teknikler), Ankara:
MPM Yayınları No:630, 2001.
3. Montgomery DC. Introduction to Statistical
Quality Control, 5th edition, John Wiley, NJ,
ABD, 2005.
4. Pham D.T., Oztemel E., “Control chart pattern
recognition using neural networks”, Journal of
Systems Engineering, Cilt No:2, 256–262, 1992.
5. Hwarng H.B., Hubele N.F., “Back-propagation
pattern recognisers for X control charts:
methodology and performance”, Computers
&Industrial Engineering, Cilt 24, 219-235,
1993.
6. Velasco T., Rowe M.R., “Back propagation
artificial neural networks for the analysis of
quality control charts”, Computers and
Industrial Engineering, Cilt 25,397–400, 1993.
7. Cheng C.S., “A neural network approach for the
analysis of control chart patterns”, International
Journal of Production Research, Cilt No: 35,
667–697, 1997.
8. Guh R.S., Tannock J.D.T., “Recognition of
control chart concurrent patterns using a neural
network approach” Interantional Journal of
Production Research, Cilt 37,1743–1765, 1999.
9. Guh R.S., Zorriassatine F., Tannock J.D.T,
O’Brien C., “On-line control chart pattern
detection and discrimination—a neural network
approach”, Artifical Intelliegent Engineering,
Cilt 13, 413–425, 1999.
10. Perry M.B., Spoerre J.K, Velasco T., “Control
chart pattern recognition using back propagation
artificial neural networks”, International Journal
of Production Research, Cilt 39,3399–3418,
2001.
11. Sagirouglu S., Besdok E., Erler M. “Control chart
pattern recognition using artificial neural
networks”, Turkish Journal of Electrical
Engineering, Cilt 8, 137-147, 2000.
12. Gauri S.K., Chakraborty S., “Feature-based
recognition of control chart patterns”, Computers
and Industrial Engineering, Cilt 51,726–742,
2006.
13. Ebrahimzadeh A., Ranaee V., “Control chart
pattern recognition using an optimized neural
network and efficent features”, ISA Transactions,
Cilt 49,387-393, 2010.
14. Ranaee V., Ebrahimzadeh A., Ghaderi R.,
“Application of the PSO-SVM model for
recognition of control chart patterns”, ISA
Transactions, Cilt 49, 577-586, 2010.
15. Swift J.A., Mize J.H., “Out-of-control pattern
recognition and analysis for quality control charts
using lisp-based systems”. Computers &
Industrial Engineering, Cilt 28, 81-91, 1995.
16. Le Q., Goal X., Teng L., Zhu M., “A new ANN
model and its application in pattern recognition of
control charts” Proc. IEEE. WCICA, 1807-1811,
2008.
17. Cheng Z., Ma Y., “A research about pattern
recognition of control chart using probability
neural network”, Proc. ISECS, 140-145, 2008.
18. Hassan A., Nabi Baksh M.S., Shaharoun A.M.,
Jamaluddin H., “Improved SPC chart pattern
recognition using statistical features”,
International Journal of Production Research,
Cilt 41, 1587–1603, 2003.
19. Anagun, A.S., “A Neural Network Applied to
Pattern Recognition in Statistical Process
İstatistiksel Özellik Temelli Bayes Sınıflandırıcı Kullanarak… M. O. Olgun ve G. Özdemir
Gazi Üniv. Müh. Mim. Fak. Der. Cilt 27, No 2, 2012 311
Control”, Computers and Industrial
Engineering, 35:1-2, 185-188, 1998.
20. Pham D.T., Wani M.A., “Feature-based control
chart pattern recognition”, International Journal
of Production Research, Cilt 35,1875–1890,
1997.
21. Khoo, Michael B.C. , “Performance Measures for
the Shewhart X Control Chart”, Quality
Engineering, Vol. 16, No.4, 585-590, 2004.
22. Guh R.S., “Simultaneous process mean and
variance monitoring using artifical neuaral
networks”, Computers and Industrial
Engineering, Cilt 58, 739-753, 2010.
23. Joanes, D.N., Gill C.A., “Comparing measures of
sample skewness and kurtosis”, Journal of the
Royal Statistical Society (Series D): The
Statistician, 47 (1), 183-189, 1998.
24. Ozkan Y., Veri Madenciliği Yöntemleri, Papatya
Yayıncılık, İstanbul, 2008.
25. Gauri S.K., Chakraborty S., “Improved
recognition of control chart patterns using artifical
neural networks”, International Journal of
Advanced Manufacturing Technology Cilt 36,
1191- 1201, 2008.
26. Demuth H., Beale M., Neural network toolbox
user's guide. Math Works, Natick, MA, ABD,
1998.

Thank you for copying data from http://www.arastirmax.com