You are here

SPİNELOKSİT PARTİKÜL İÇEREN NANOAKIŞKANLARIN TERMOFİZİKSEL ÖZELLİKLERİNİN BELİRLENMESİ

DETERMINATION OF THERMODYNAMIC PROPERTIES OF SPINEL OXIDE PARTICLES CONTAINING NANOFLUIDS

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Nano -sized metal and metal oxide nano - fluids containing particles exhibits higher performance in terms of thermal conductivity. For this purpose, thermal systems are used as working fluids. A lot of thermal and rheological properties of the working fluid is an important parameter to solve the heat problem. Magnesium aluminate spinel in this study (MgAl2O4) nanoscale particles to degrade the pure water into the nano- fluid obtained by participating in specific proportions together with surface activators and thermodynamic properties are determined experimentally. According to contain two different metals in the metal oxide spinel -type oxides metal oxide according to the effects of thermal performance is thought to be more.
Abstract (Original Language): 
Nano boyutta metal ve metal oksit partikül içeren nanaoakışkanlar ısıl iletkenlik bakımından daha yüksek performans göstermektedir. Bu amaçla ısıl sistemlerde çalışma akışkanı olarak kullanılmaktadırlar. Bir çok ısı problemlerinin çözümünde çalışma akışkanların ısıl ve reolojik özellikleri önemli parametredir. Bu çalışma da magnezyum aluminat spinel (MgAl2O4) partikülleri nanoboyuta indirgeyerek saf su içerisine belirli oranlarda katılarak yüzey aktifleştiricilerle beraber nanoakışkanlar elde edilmiş ve termofiziksel özellikleri deneysel olarak belirlenmiştir. Metal oksitlere göre içerisinde farklı iki metali bulundurması spinel tipi oksitlerin ısıl performansa etkilerinin metal oksitlere göre daha fazla olacağı düşünülmektedir.
285
304

REFERENCES

References: 

1. ThermodynamicassessmentandexperimentsinthesystemMgO–Al2O3 Tilo Zienert , OlgaFabrichnaya . TU BergakademieFreiberg,InstituteofMaterialScience,Gustav-ZeunerStr.5,09599Freiberg,Germany
2. Shackelford, J.F., Alexander, W. and Park, J.S., Eds., CRC Materials Science and Engineering Handbook, CRC Press, Boca Raton, Florida 1994.
3. Alper, A.M., McNally, R.N., Ribbe, P.H. and Doman R.C., J. Am. Ceram. Soc., Volume 45, Page 263,1962.
4. Harries-Rees, K. 1993. Industrial Minerals Consumer Survey, 1993, London.
5. Clarke, G. 1993. Industrial Minerals Consumer Survey, 1993, London.
6. Soady, J. S. ve Plint, S. 1991. UNITECR'91 Congress, 1991, Aachen.
7. Yamamura, T.etal, 1993. Taikabutsu Overseas, June 1993, Japan.
8. Hobrecht etal, 1988. Ciments, Betons, Plâtres, Chaux, 4,1988.France.
9. Kuennecke, M. etal, 1986. World Cement, June 1986. Kuennecke, M. etal, 1986. World Cement, July/August 1986.
10. Aksel C. etal, 1996. 3. Seramik Kongresi, Ekim 1986, İstanbul.
11. Gonzalves, G. E. etal, 1993. Amer. Cer. Soc. Bull., February 1993, USA.
12. Dal Maschio, R., Fabbri, B. and Fiori, C., Industrial Applications of Refractories Containing Magnesium Aluminate Spinel, Industrial Ceramics, Volume 8, Issue 3, Pages 121-126, 1988.
13. Tokunaga, K., Kozuka, H., Honda, T. and Tanemura, F., Further improvements in high temperature strength, coating adherence, and corrosion resistance of magnesia-spinel bricks for rotary cement kiln, UNITECR 91 Congress, Aachen, Germany, Pages 431-435, 1991.
14. Cooper, S.C. and Hodson, P.T.A., Magnesia-Magnesium Aluminate Spinel as a Refractory, Trans. J. Br. Ceram. Soc., Volume 81, Pages 121-128, 1982.
15. Bartha, P., Magnesia Spinel Bricks – Properties, Production and Use, Proc. Int. Symp. Refractories, Refractory Raw Materials and High Performance Refractory Products, eds. X. Zhong et al., Pergamon, Hangzhou, Pages 661-674, 1989.
16. Aksel, C., Rand, B., Riley, F.L., and Warren, P.D., Mechanical Properties of Magnesia-Spinel Composites, J. Eur. Ceram. Soc., Volume 22, Issue 5, Pages 745-754, 2002.
17. Aksel, C., Davidge, R.W., Warren, P.D. and Riley, F.L. Mechanical Properties of Model Magnesia-Spinel Composite Materials, Euro Ceramics V, Part 3, Key Engineering Materials, Volume 132-136, Pages 1774-1777, Versailles, France, 1997.
302 T. Menlik-A.Sözen-M. Gürü-N. Çağlayan-S. Öztaş 1/2 (2015) 285-304
Gazi Journal of Engineering Sciences
18. Aksel, C., Rand, B., Riley, F.L. and Warren, P.D., Thermal Shock Behaviour of Magnesia-Spinel Composites, J. Eur. Ceram. Soc., Volume 24, Issue 9, Pages 2839-2845, 2004.
19. Kingery, W.D. , Bowen, H.K., Uhlmann, D.R., Introduction to Ceramics, John Wiley & Sons, 1976,ISBN 0-471-47860-1.
20. W.F.Smith, Malzeme Bilimi ve Mühendisli¤i, Literatür Yay›nc›l›k, 2001,
ISBN: 975 843103-X.
21. Yazıcı, O., Sol-Jel Yöntemiyle Üretilmifl Spinel Katkılı Düflük Çimentolu Alüminalı Refrakterlerin incelenmesi, Yüksek Lisans Tezi, istanbul Üniversitesi, 2008.
22. Wulfsberg, G., Inorganic Chemistry, University Science Books, 2000
23. UTOMO, A., HEIKO POTH. B., ROBBINS, A., ANDRZEJ W. PACEK A. A. W., Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids, International Journal of Heat and Mass Transfer, 55, 7772–7781, (2012).
24. CHOI US., Enhancing thermal conductivity of fluids with nanoparticles, ASME FED, 231, 99–103, (1995).
25. HAN W., S., RHI, S., H., “Thermal characteristics of grooved heat pipe with hybrid nanofluids”. Thermal Science, 15/1, 195-206 (2011).
26. HUMINIC, G., HUMINIC, A., MORJAN, I., DUMITRACHE, F., Experimental study of the thermal performance of thermosyphon heat pipe using iron oxide nanoparticles, International Journal Of Heat And Mass Transfer - Int J Heat Mass Transfer, vol. 54, no. 1, 656-661, (2011).
27. KHANDEKAR, S., JOSHI, Y. M., MEHTA, B., Thermal performance of closed two-phase thermosyphon using nanofluids, International Journal of Thermal Sciences, 47, 659–667, (2008).
28. LU, L., LIU, Z., XIAO, H., Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors Part 1: Indoor experiment, Solar Energy 85 :379–387, (2011)
29. NOIE, S.H., HERIS, S. Z., KAHANI, M., NOWEE, S.M., Heat transfer enhancement using Al2O3/water nanofluid in a two-phase closed thermosyphon, International Journal of Heat and Fluid Flow, 30, 700–705, (2009).
30. SAİDUR, R., MENG, T.C.,SAİD, Z., HASANUZZAMAN, M., KAMYAR, A., Evaluation of the effect of nanofluids-based absorbers on direct solar collector, I.J.Heat and Mass Transfer, 55:5899-5907, (2012).
31. SHAFAHI, M., BIANCO, V., VAFAI, K., MANCA, O., An investigation of the thermal performance of cylindrical heat pipes using nanofluids, International Journal of Heat and Mass Transfer, 53, 376–383, (2010).
T. Menlik-A.Sözen-M. Gürü-N. Çağlayan-S. Öztaş 1/2 (2015) 285-304 303
Gazi Mühendislik Bilimleri Dergisi
32. SHUNG-WEN, K., WEI-CHIANG, W., SHENG-HONG, T., AND SHIH-YU, Y., Experimental investigation of silver nano-fluid on heat pipe thermal performance”, Applied Thermal Engineering, Volume 26, Issues 17-18, 2377-2382, (2006).
33. SURESHKUMAR, R., MOHIDEEN, S., T., NETHAJI, N., Heat transfer characteristics of nanofluids in heat pipes: A review, Renewable and Sustainable Energy Reviews, 20, 397-410, (2013)
34. WANG X., Mujumdar A.S., Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Sciences, 46, 1–19, (2007).
35. XUAN Y., Li Q., Hu W., Aggregation Structure and Thermal Conductivity of Nanofluids, AIChE Journal, 49/4, 1038 – 1043, (2003).
36. XUAN Y., Roetzel W., Conceptions for heat transfer correlation of nanofluid, Internat. J. Heat Mass Transfer, 43, 3701–3707, (2000).
37. YI-HSUAN HUNG, TUN-PING TENG, BO-GU LIN, Evaluation of the thermal performance of a heat pipe using alumina nanofluids, Experimental Thermal and Fluid Science, 44, 504–511, (2013).
38. YOUSEFIA, T., SHOJAEIZADEHA, E., VEYSIA, F., ZINADINIB, S., An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector, Solar Energy 86:771–779, (2012)
39. YOUSEFIA, T., VEYSIA, F., SHOJAEIZADEHA, E., ZINADINIB, S., An experimental investigation on the effect of Al2O3-H2O nanofluid on the efficiency of flat-plate solar collectors, Renewable Energy 39:293-298, (2012)

Thank you for copying data from http://www.arastirmax.com