You are here

DİFÜZYONLU ABSORBSİYONLU MİNİ SOĞUTUCULARDA NANOAKIŞKAN KULLANIMININ EKSERJİ PERFORMANSINA ETKİSİ

THE EFFECT OF THE USAGE OF NANOFLUID ON EXERGY PERFORMANCE OF DIFFUSION ABSORPTION MINI REFRIGERATION

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, the effects of the passive heat transfer improvement method of coupling ammonia/water with nano‐size alumina (Al2O3) particles were examined in regard to the heat performance of a diffusion absorption refrigeration system (DARS). Adding nanoparticles into the fluid leads to significant improvement in heat transfer since the surface area and heat capacity of the fluid increase due to the high surface area of the nanoparticles. In this study, cooling/absorbent fluid mixtures with Al2O3 nanoparticles and their impact on system energy and exergy performance were assessed. The results of experiments indicated that the system with nanoparticles provided better absorption of heat from the generator and faster evaporation of the cooler from the cooling/absorption fluid. Addition of alumina nanoparticles to DARS improved the system’s coefficient of performance (COP) and exergetic coefficient of performance (ECOP) by 55.56% and 22.8%, respectively, and reduced the circulation ratio (f) by 51.72%. It was found that the highest exergy destruction was in the DARS generator.
Abstract (Original Language): 
Bu çalışmada, nano boyutta alumina (Al2O3) partikülleri içeren amonyak/su çalışma akışkanı kullanılarak Difüzyonlu Absorbsiyonlu Soğutma Sisteminin (DASS) enerji ve ekserji analizleri yapılmıştır. Nanopartiküllerin sahip olduğu büyük yüzey alanlarından dolayı akışkanın yüzey alanı ve ısıl kapasitesi arttığı için ısı transferinin gerçekleştiği komponentlerdeki ısı geçişi hızlanarak sistemin soğutma sıcaklığına düşüşü hızlanır. Yapılan deneyler, nanopartikül içeren sistemin, jeneratörde daha iyi ısı absorbsiyonu sağladığını ve soğutucunun, soğurucu akışkan içerisinden daha hızlı bir şekilde buharlaştığını göstermiştir. Çalışma akışkan çiftine alumina nanopartüküllerinin eklenmesi sistemin ısıl performans katsayısını ve ekserjetik performans katsayısını sırasıyla %55.56 ve %22.8 oranlarında arttırmış, dolaşım oranını (f) ise %51.72 oranında azaltmıştır. En yüksek ekserji kaybı jeneratörde gerçekleşmiştir.
99
118

REFERENCES

References: 

1. Von Platen, B.C., Munters, C.G. , Refrigerator, US Patent 1, (1928) 685‐764.
2. Zohar,A., Jelinek, M., Levy, A., Borde, I., The influence of diffusion absorption
refrigeration cycle configuration on the performance. Applied Thermal Engineering. 27
(13) (2007) 2213‐2219.
3. Koyfman, A., Jelinek, M., Levy, A., Borde, I, An experimental investigation of buble
pump performance for diffusion absorption refrigeration system with organic working
fluids. Applied Thermal Engineering. 23 (2003) 1181‐1194.
4. Sözen, A., Menlik, T., Özbaş, E., The effect of ejector on the performance of diffusion
absorption refrigeration systems: An experimental study. Applied Thermal
Engineering. 33‐34 (2012) 44‐53
5. Starace, G., De Pascalis, L., An enhanced model for the design diffusion absorption
refrigerators, International Journal of Refrigeration, 36 (2013) 1495‐1503.
6. Starace, G., De Pascalis, L., An advanced analytical model of the diffusion absorption
refrigerator cycle, International Journal of Refrigeration, 35 (2012) 605‐612.
7. Rodriguez‐Munoz, J.L., Belman‐Flores, J.M., Review of diffusion‐absorption
refrigeration technologies. Renewable and Sustainable Energy Reviews. 30 (2014) 145‐
153.
8. Zohar, A., Jelinek, M., Levy, A., Borde, I., The influence of the generator and bubble
pump configuration on the performance of diffusion absorption refrigeration (DAR)
system, International Journal of Refrigeration, 31 (2008) 962‐969.
9. Zohar, A., Jelinek, M., Levy, A., Borde, I., Performance of diffusion absortion
refrigeration cycle with organic working fluids. International Journal of Refrigeration.
32 (2009) 1241‐1246.
10. Yang , L., Du, K., Bao, S., Wu, Y., Investigations of selection of nanofluid applied to the
ammonia absorption refrigeration system. International Journal of Refrigeration. 35
(2012) 2248‐2260.
11. Kim, J.K., Lee, J.K., Kang, Y.T., Absorption performance enhancement by nano‐particles
and chemical surfactants in binary nanofluids. International Journal of Refrigeration.
30 (2007) 50‐57
12. Mahbubal, I.M., Fadhilah, S.A., Saidur, R., Leong, K.Y., Amalina, M.A., Thermopysical
properties and heat transfer performance of Al2O3/R‐134a nanorefrigerants,
International Journal of Heat and Mass Transfer. 57 (2013) 100‐108.
13. Yıldız, A., Ersöz, M.A. Energy and exergy analyses of the diffusion absorption
refrigeration system, Energy, 60 (2013) 407‐415.
14. Dincer, I. and Rosen, M.A. Exergy: Energy, Environment and Sustainable Development,
Elsevier Science Ltd. (2007)
118 A. Sözen‐ E. Özbaş ‐ T. Menlik ‐ E. Çiftçi ‐ Ü. İskender 1/1 (2015) 99‐118
Gazi Journal of Engineering Sciences
15. Gailhanou, H., Blanc, P., et al. Thermodynamic properties of illite, smectite and
beidellite by calorimetric methods: Enthalpies of formation, heat capacities, entropies
and Gibbs free energies of formation, Geochimica et Cosmochimica Acta, 89 (2012)
279‐301
16. Kotas, T.J. The exergy method of thermal plant analysis. Florida: Kriger Publishing
Company. (1995)

Thank you for copying data from http://www.arastirmax.com