You are here

Sinir Sisteminde Pürinerjik Mekanizmalar: Adenozin Trifosfatın Migren Patofizyolojisindeki Rolü

Purinergic mechanisms in the nervous system: the role of adenosine triphosphate in the migraine pathophysiology

Journal Name:

Publication Year:

DOI: 
10.5505/abantmedj.2016.98250
Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Notwithstanding that adenosine 5'-triphosphate (ATP) is an intracellular energy source, it is an important neurotransmitter and co-transmitter which play a role in purinergic signaling when it get out of the cell. Extracellular ATP is a signaling molecule in the most area of the body and it shows its effects via ionotropic P2X and metabotropic P2Y receptors in the central and peripheral nervous system. These purinergic receptors activated by ATP and other nucleotides demonstrate a wide distribution throughout the body. It is well established nowadays that ATP has function as a neurotransmitter in the central and peripheral nervous system and purinergic signaling plays a role in many physiological process and additionally in the pathological conditions such as pain, migraine and inflammation. Recently studies have showed that ATP has a role in initiation and propagation of somatic and visceral pains. ATP is able to initiate periferal pain signals via P2X3 and P2X2/3 receptors which are located primary afferent nerve terminals. When ATP activate these receptors, pain signals are produced by membrane depolarization via cation inflow to the cell. Transmission of pain signals from periferal to central are mediated by P2X2, P2X3 and P2X6 receptors which are located second order neurons. Although it has been known that main process in initiation of migraine pain is activation of the trigeminovascular system, pathophysiology of migraine is not yet completely understood. It has been claimed by studies recently that ATP may play a key role via its purinoceptors in migraine headache as well like somatic pains. In the present review, functions of extracellular ATP and its purinoceptors in the migraine pathophysiology and new treatment approaches were discussed.
Abstract (Original Language): 
Adenozin 5'-trifosfat (ATP) hücre içi enerji kaynağı olmasının yanında hücre dışına çıktığında pürinerjik haberleşmede rol oynayan önemli bir nörotansmitter ve kotransmitterdir. Vücudun birçok bölümünde bir sinyal molekülü olan ekstrasellüler ATP, merkezi ve periferik sinir sisteminde etkisini iyonotropik P2X ve metabotropik P2Y reseptörleri aracılığı ile gösterir. ATP ve diğer nükleotitlerin aktive ettiği bu pürinerjik reseptörler tüm vücut boyunca dağılım gösterir. ATP' nin merkezi ve periferik sinir sisteminde bir nörotransmitter olarak işlevinin olduğu ve pürinerjik haberleşmenin birçok fizyolojik olayda ve ayrıca ağrı, migren ve inflamasyon gibi patofizyolojik durumlarda rol oynadığı günümüzde daha iyi bilinmektedir. Son zamanlarda yapılan çalışmalar ATP' nin somatik ve viseral ağrıların başlatılmasında ve iletilmesinde rolü olduğunu göstermektedir. ATP primer afferent sinir terminallerinde bulunan P2X3 ve P2X2/3 reseptörleri aracılığı ile periferik ağrı sinyallerini başlatabilmektedir. ATP bu reseptörleri aktive ettiğinde hücre içine hızlı bir katyon girişi ile membran depolarize olmakta ve ağrı sinyalleri oluşmaktadır. Ağrı sinyallerinin periferden merkeze aktarılmasına ise ikinci sıra nöronlarında bulunan P2X2, P2X3 ve P2X6 reseptörleri aracılık etmektedir. Migren ağrısının başlamasındaki asıl olayın trigeminovasküler sistemin aktivasyonu olduğu bilinmesine rağmen migren patofizyolojisi henüz anlaşılamamıştır. Son zamanlarda yapılan çalışmalarla somatik ağrılarda olduğu gibi bir viseral ağrı olan migren baş ağrısında da ATP' nin pürinoseptörleri aracılığı ile önemli bir rol oynayabileceği ileri sürülmektedir. Sunulan derlemede bir nörotransmitter olarak ekstrasellüler ATP ve pürinoseptörlerinin migren patofizyolojisindeki işlevleri ve yeni tedavi yaklaşımları tartışılmıştır.
132
152

REFERENCES

References: 

1. Holton P. The liberation of
adenosine triphosphate on antidromic
stimulation of sensory nerves. J Physiol
1959;145:494-504.
2. Edwards FA, Gibb AJ, Colquhoun D.
ATP receptor-mediated synaptic currents
in the central nervous system. Nature
1992;359:144-47.
3. Silinsky EM, Gerzanich V, Vanner
SM. ATP mediates excitatory synaptic
transmission in mammalian neurones. Br J
Pharmacol 1992;106:762-63.
4. Evans RJ, Derkach V, Surprenant A.
ATP mediates fast synaptic transmission in
mammalian neurons. Nature
1992;357:503-05.
5. Burnstock G.Historical review: ATP
as a neurotransmitter. Trends Pharmacol
Sci 2006;27:166-76.
6. Abbracchio MP, Burnstock G,
Verkhratsky A, Zimmermann H. Purinergic
signalling in the nervous system: an
overview. Trends Neurosci 2009; 32:19-29.
7. Bulanova E, Bulfone-Paus S. P2
receptor-mediated signaling in mast cell
biology. Purinergic Signal 2010;6:3-17.
Kılınç E.
Abant Med J 2016;5(2):13 2 -152 1 47
8. Ralevic V, Dunn WR. Purinergic
transmission in blood vessels. Auton
Neurosci 2015;191:48-66.
9. Pankratov Y, Lalo U, Verkhratsky A,
North RA. Vesicular release of ATP at
central synapses. Pflugers Arch.
2006;452:589-97.
10. Sawada K, Echigo N, Juge N, Miyaji
T, Otsuka M, Omote H, Yamamoto A,
Moriyama Y. Identification of a vesicular
nucleotide transporter. Proc Natl Acad Sci
USA 2008;105:5683-86.
11. Zimmermann H. Ectonucleotidases
in the nervous system. Novartis Found
Symp 2006;276:113-28.
12. Abbracchio MP, Burnstock G,
Verkhratsky A, Zimmermann H. Purinergic
signalling in the nervous system: an
overview. Trends Neurosci 2009; 32:19-29.
13. Cieślak M, Czarnecka J, Roszek K,
Komoszyński M. The role of purinergic
signaling in the etiology of migraine and
novel antimigraine treatment. Purinergic
Signal 2015;11:307-16.
14. Lewis CJ, Ennion SJ, Evans RJ. P2
purinoceptor-mediated control of rat
cerebral(pial) microvasculature;
contribution of P2X and P2Y receptors. J.
Physiol 2000; 527: 315-24.
15. Arulkumaran N, Unwin RJ, Tam
FWK. A potential therapeutic role for P2X7
receptor (P2X7R) antagonists in the
treatment of inflammatory diseases.
Expert Opin Investig Drugs 2011; 20: 897-
915.
16. Burnstock G. Purinergic receptors
and pain. Curr Pharm Des 2009;15:1717-
35.
17. Abbracchio MP, Burnstock G.
Purinoceptors: are there families of P2X
and P2Y purinoceptors? Pharmacol Therap
1994; 64: 445-75.
18. Atkinson L, Batten TF, Deuchars J.
P2X(2) receptor immunoreactivity in the
dorsal vagal complex and area postrema
of the rat. Neuroscience 2000;99:683-96.
19. Deuchars SA, Atkinson L, Brooke
RE, Musa H, Milligan CJ, Batten TF,
BuckleyNJ, Parson SH, Deuchars
J.Neuronal P2X7 receptors are targeted to
presynaptic terminals in the central and
peripheral nervous systems. J Neurosci
2001;21:7143-52.
20. Boehm S. ATP stimulates
sympathetic transmitter release via
presynaptic P2X purinoceptors. J Neurosci
1999;19:737-46.
21. Burnstock G, Knight GE. Cellular
distribution and functions of P2 receptor
Kılınç E.
Abant Med J 2016;5(2):13 2 -152 1 48
subtypes in different systems. Int Rev
Cytol 2004;240:31-304.
22. Slater NM, Barden JA, Murphy CR.
Distributional changes of purinergic
receptor subtypes (P2X 1-7) in uterine
epithelial cells during early pregnancy.
Histochem J 2000:365-72.
23. Ishii K, Kaneda M, Li H, Rockland
KS, Hashikawa T. Neuron-specific
distribution of P2X7 purinergic receptors
in the monkey retina. J Comp Neurol
2003;459:267-77.
24. Burnstock G. Physiology and
pathophysiology of purinergic
neurotransmission. Physiol Rev
2007;87:659-97.
25. Burnstock G. Noradrenaline and
ATP: cotransmitters and neuromodulators.
J Physiol Pharmacol 1995; 46:365-84.
26. Burnstock G. Purinergic signalling
in the lower urinary tract. Acta Physiol
(Oxf). 2013;207:40-52.
27. Burnstock G. The journey to
establish purinergic signalling in the gut.
Neurogastroenterol Motil 2008;20:8-19.
28. Sperlagh B, Vizi ES, Wirkner K, Illes
P. P2X7 receptors in the nervous system.
Prog Neurobiol 2006;78:327-46.
29. Liang S, Xu C, Li G, Gao Y. P2X
receptors and modulation of pain
transmission: focus on effects of drugs and
compounds used in traditional Chinese
medicine. Neurochem Int 2010;57:705-12.
30. Burnstock G. Purine-mediated
signaling in pain and visceral perception.
Trends Pharmacol Sci 2001;22:182-88.
31. Hamilton SG, Warburton J,
Bhattachrjee A, Ward J, McMahon SB. ATP
in human skin elicits a dose-related pain
response which is potentiated under
conditions of hyperalgesia. Brain
2000;123:1238-46.
32. Stanfa LC, Kontinen VK, Dickenson
AH. Effects of spinally administered P2X
receptor agonists and antagonists on the
responses of dorsal horn neurones
recorded in normal, carrageenan-inflamed
and neuropathic rats. Br J Pharmacol
2000;129:351-59.
33. Burnstock G. Purinergic
mechanisms and pain-an update. Eur J
Pharmacol. 2013;716:24-40.
34. Vulchanova L, Riedl MS, Shuster SJ,
Stone LS, Hargreaves KM, Buell G,
Surprenant A, North RA, Elde R. P2X3 is
expressed by DRG neurons that terminate
in inner lamina II. Eur J Neurosci
1998;10:3470-78.
35. Sokolova E, Skorinkin A, Moiseev I,
Agrachev A, Nistri A, Giniatullin R.
Kılınç E.
Abant Med J 2016;5(2):13 2 -152 1 49
Experimental and modeling studies of
desensitization of P2X3 receptors. Mol
Pharmacol 2006;70:373-82.
36. Fabbretti E. ATP P2X3 receptors
and neuronal sensitization. Front Cell
Neurosci 2013;7:236.
37. Cockayne DA, Hamilton SG, Zhu
QM, Dunn PM, Zhong Y, Novakovic S,
Malmberg AB, Cain G, Berson A,
Kassotakis L, Hedley L, Lachnit WG,
Burnstock G, McMahon SB, Ford AP.
Urinary bladder hyporeflexia and reduced
pain-related behaviour in P2X3-deficient
mice. Nature 2000;407:1011-15.
38. Sessle BJ. Peripheral and central
mechanisms of orofacial pain and their
clinical correlates. Minerva Anestesiol
2005;71:117-36.
39. Andó RD, Méhész B, Gyires K, Illes
P, Sperlágh B. A comparative analysis of
the activity of ligands acting at P2X and
P2Y receptor subtypes in models of
neuropathic, acute and inflammatory pain.
Br J Pharmacol 2010;159:1106-17.
40. Fields RD, Burnstock G. Purinergic
signalling in neuron-glia interactions. Nat
Rev Neurosci 2006;7:423-36.
41. Jarvis MF, Burgard EC,
McGaraughty S, Honore P, Lynch K,
Brennan TJ, SubietaA, Van Biesen T,
Cartmell J, Bianchi B, Niforatos W, Kage K,
Yu H, Mikusa J,Wismer CT, Zhu CZ, Chu K,
Lee CH, Stewart AO, Polakowski J, Cox BF,
Kowaluk E,Williams M, Sullivan J, Faltynek
C. A-317491, a novel potent and selective
non-nucleotide antagonist of P2X3 and
P2X2/3 receptors, reduces chronic
inflammatory and neuropathic pain in the
rat. Proc. Natl. Acad. Sci. U.S.A.
2002;99:17179-84.
42. Honore P, Donnelly-Roberts D,
Namovic MT, Hsieh G, Zhu CZ, Mikusa
JP,Hernandez G, Zhong C, Gauvin DM,
Chandran P, Harris R, Medrano AP, Carroll
W,Marsh K, Sullivan JP, Faltynek CR, Jarvis
MF.A-740003 [N-(1-{[(cyanoimino) (5-
quinolinylamino)methyl]amino}-2,2-
dimethylpropyl)-2-(3,4-dimethoxyphenyl)
acetamide], a novel and selective P2X7
receptor antagonist, dose-dependently
reduces neuropathic pain in the rat. J
Pharmacol Exp Ther 2006;319:1376-85.
43. Nelson DW, Gregg RJ, Kort ME,
Perez-Medrano A, Voight EA, Wang Y,
Grayson G,Namovic MT, Donnelly-Roberts
DL, Niforatos W, Honore P, Jarvis MF,
Faltynek CR,Carroll WA. Structure-activity
relationship studies on a series of novel,
substituted 1-benzyl-5-phenyltetrazole
P2X7 antagonists. J Med Chem
2006;49:3659-66.
Kılınç E.
Abant Med J 2016;5(2):13 2 -152 1 50
44. McGaraughty S, Chu KL, Namovic
MT, Donnelly-Roberts DL, Harris RR, Zhang
XF,Shieh CC, Wismer CT, Zhu CZ, Gauvin
DM, Fabiyi AC, Honore P, Gregg RJ, Kort
ME, Nelson DW, Carroll WA, Marsh K,
Faltynek CR, Jarvis MF. P2X7-related
modulation of pathological nociception in
rats. Neuroscience. 2007;146:1817-28.
45. Collo G, Neidhart S, Kawashima E,
Kosco-VilboisM, North RA, Buell G.Tissue
distribution of the P2X7 receptor.
Neuropharmacology 1997;36:1277-83.
46. Lee HY, Bardini M, Burnstock G.
Distribution of P2X receptors in the
urinary bladder and the ureter of the rat. J
Urol 2000;163:2002-07.
47. Pannicke T, Fischer W, Biedermann
B, Schädlich H, Grosche J, Faude F,
Wiedemann P, Allgaier C, Illes P, Burnstock
G, Reichenbach A. P2X7 receptors in
Muller glial cells from the human retina. J
Neurosci 2000;20:5965-72.
48. Gerevich Z, Müller C, Illes P.
Metabotropic P2Y1 receptors inhibit P2X3
receptor-channels in rat dorsal root
ganglion neurons. Eur J Pharmacol
2005;521:34-38.
49. Ceruti S, Fumagalli M, Villa G,
Verderio C, Abbracchio M. Purinoceptormediated
calcium signaling in primary
neuron-glia trigeminal cultures. Cell
Calcium 2008;43:576-90.
50. Cui Y, Kataoka Y, Watanabe Y. Role
of cortical spreading depression in the
pathophysiology of migraine. Neurosci Bull
2014;30:812-22.
51. Tajti J, Szok D, Majláth Z, Tuka B,
Csáti A, Vécsei L. Migraine and
neuropeptides. Neuropeptides
2015;52:19-30.
52. Lewis DW. Toward the definition of
childhood migraine. Curr Opin Pediatr
2004;16:628-36.
53. Levy D, Burstein R, Kainz V,
Jakubowski M, Strassman AM. Mast cell
degranulation activates a pain pathway
underlying migraine headache. Pain
2007;130:166-76.
54. Dalkara T, Zervas NT, Moskowitz
MA. From spreading depression to the
trigeminovascular system. Neurol Sci
2006;27:86-90.
55. Goadsby PJ, Lipton RB, Ferrari MD.
Migraine-current understanding and
treatment. N Engl J Med 2002;346:257-70.
56. Pietrobon D. Migraine: new
molecular mechanisms. Neuroscientist
2005;11:373-86.
Kılınç E.
Abant Med J 2016;5(2):13 2 -152 1 51
57. Burnstock G, Ralevic V. Purinergic
signaling and blood vessels in health and
disease. Pharmacol Rev 2014;66:102-92.
58. Lauritzen M. Pathophysiology of
the migraine aura. The spreading
depression theory. Brain 1994;117:199-
210.
59. Hautaniemi T, Petrenko N,
Skorinkin A, Giniatullin R. The inhibitory
action of the antimigraine nonsteroidal
anti-inflammatory drug naproxen on P2X3
receptor-mediated responses in rat
trigeminal neurons. Neuroscience
2012;209:32-8.
60. Giniatullin R, Nistri A.
Desensitization properties of P2X3
receptors shaping pain signaling. Front
Cell Neurosci 2013;7:245.
61. Staikopoulos V, Sessle BJ, Furness
JB, Jennings EA. Localization of P2X2 and
P2X3 receptors in rat trigeminal ganglion
neurons. Neuroscience 2007;144:208-16.
62. Zakharov A, Vitale C, Kilinc E,
Koroleva K, Fayuk D, Shelukhina I,
Naumenko N,Skorinkin A, Khazipov R,
Giniatullin R.Hunting for origins of
migraine pain: cluster analysis of
spontaneous and capsaicin-induced firing
in meningeal trigeminal nerve fibers. Front
Cell Neurosci 2015;9:287.
63. Kılınç E, Koroleva K, Guerrero-Toro
C, Töre F, Giniatullin R. The Role of
Adenosine Triphosphate and its Receptors
in Migraine Pathophysiology. Acta Physiol
(Oxf) Turkish Society of Physiological
Sciences 41st National Physiology
Congress 2015;215:44-5.
64. Haanes KA, Edvinsson L. Expression
and characterization of purinergic
receptors in rat middle meningeal arterypotential
role in migraine. PLoS One
2014;9:e108782.
65. Nishizaki T. ATP- and adenosinemediated
signaling in the central nervous
system: adenosine stimulates glutamate
release from astrocytes via A2a adenosine
receptors. J Pharmacol Sci 2004;94:100-2.
66. Kruuse C, Lassen LH, Iversen HK,
Oestergaard S, Olesen J. Dipyridamole
may induce migraine in patients with
migraine without aura. Cephalalgia
2006;26:925-33.
67. Sakuma I, Akaishi Y, Fukao M,
Makita Y, Makita MA, Kobayashi T,
Matsuno K, Miyazaki T, Yasuda H.
Dipyridamole potentiates the antiaggregating
effect of endothelium-derived
relaxing factor. Thromb Res Suppl
1990;12:87-90.
Kılınç E.
Abant Med J 2016;5(2):13 2 -152 1 52
68. Guieu R, Devaux C, Henry H, Bechis
G, Pouget J, Mallet D. Adenosine and
migraine. Can J Neurol Sci 1998;25:55-8.
69. Sollevi A, Belfrage M, Lundeberg T,
Segerdahl M, Hansson P. Systemic
adenosine infusion: a new treatment
modality to alleviate neuropathic pain.
Pain 1995;61:155-8.
70. Gurden MF, Coates J, Ellis F, Evans
B, Foster M, Hornby E, Kennedy I,
MartinDP, Strong P, Vardey CJ.Functional
characterization of three adenosine
receptor types. Br J Pharmacol
1993;109:693-8.
71. Sheehan M,Wilson D, Cousins R,
Giles H. Relative intrinsic efficacy of
adenosine A1 receptor agonist measured
using functional and radioligand binding
assays. Br J Pharmacol 2000;131:34P.
72. Sjolund KF, Segerdahl M, Sollevi A.
Adenosine reduces secondary
hyperalgesia in two human models of
cutaneous inflammatory pain. Anesthesia
Analgesia 1999;88:605-10.
73. Sjolund KF, Sollevi A, Segerdahl M,
Lundeberg T. Intrathecal adenosine analog
administration reduces substance Pin
cerebrospinal fluid along with behavioral
effects thatsuggest antinociception in rats.
Anesthesia Analgesia 1997;85:627-32.
74. Giffin NJ, Kowacs F, Libri V,
Williams P, Goadsby PJ, Kaube H. Effect of
theadenosine A1 receptor agonist
GR79236 on trigeminal nociception with
blink reflex recordings in healthy human
subjects. Cephalalgia 2003;23:287-92.

Thank you for copying data from http://www.arastirmax.com