You are here

Temperleme işleminin tozaltı kaynak yöntemi ile birleştirilen mikroalaşımlı çeliklerin mekanik özelliklerine etkisi

Effect of Tempering Process on Microstructure and Mechanical Properties of Microalloyed Steels Joined by Submerged Arc Welding

Journal Name:

Publication Year:

Abstract (2. Language): 
The main benefit of microalloyed steels is to provide important energy and cost savings in the manufacturing of forged components for automotive applications. In such steels, the strength levels and other properties achieved after cooling from hot working temperatures are reported to be comparable with those obtained from conventional quenched and tempered steels. Microalloying or the use of additions of elements (V, Nb, and Ti) at small rates in low carbon steels has been successfully employed for large diameter pipelines, bridges, and other construction applications. This has been extended to medium carbon steels for various automotive engine and engineering applications. The microalloying elements produce precipitation of carbonitrides in austenite, and the pro-eutectoid ferrite and pearlite phases of the final microstructure in order to obtain grain refinement and precipitation strengthening. Submerged arc welding (SAW) is extensively used in industry to fabricate pressure vessels, pipelines, marine vessels and wind turbine towers. The extensive use of SAW is associated with certain inherent metallurgical and process advantages such as (a) high deposition rate (18 kg/h) and high electrode deposition efficiency (b) low nitrogen in weld metal (c) excellent weld bead appearance, and (d) possibility of welding over a wide range of thickness. In addition to high productivity, absence of smoke, arc flash, and thus minimum protective clothing make this process find a prominent place in fabrication industries. Microalloyed steel in dimension of 400x200x6 mm was used for welding in this study. Table 1 illustrates the chemical compositions of the asreceived metals and Oerlikon-S2 submerged arc welding wire used for joining. Before welding, microalloyed steels were heat treated at 100 oC and than the samples were centred as face to-face with 1-mm interval, The welding process was performed as two passes from front side and then back side by using Oerlikon Magmaweld brand ZD5-1000 B model submerged arc welding machine. In this work, microalloyed steels joined by using submerged arc welding method under 450 A welding current parameters. Tempering process was performed to welded joint. Welded joints were characterised in terms of hardness, tensile testing before and after tempering. The results indicated that microalloyed welded joints showed the lower hardness, yield and tensile strenght after tempering whereas the increase in % elongation. While the breaking in the HAZ at the welded joint which was not applied tempering process on the contrary breaking was observed at the base metal after tempering process. It was observed that the hardness of the welded samples S1 and S2 raised when the measurement was carried out along the horizontal measurement line from as-received metal to HAZ or weld metal. The hardness measurement was also carried out along the vertical measurement line for weld metal obtained by two passes. It was observed that the hardness values gradually decreases from second weld pass to the first weld pass. This situation shows that second weld pass applies stress relief annealing on first weld pass and therefore the hardness decreases accordingly figures 5 and 6.
Abstract (Original Language): 
Bu çalışmada, mikroalaşımlı çelik malzemeler tozaltı kaynak yöntemi ile 450 A kaynak akım değeri kullanılarak birleştirilmiştir. Kaynaklı bağlantıya temperleme işlemi uygulanmıştır. Temeperleme öncesi ve sonrası olmak üzere numunelere sertlik ve çekme testi uygulanmıştır. Sonuç olarak, mikroalaşımlı çelik malzeme kullanılarak yapılan kaynaklı bağlantıların temperleme sonrası daha düşük sertlik, akma ve çekme dayanımı gösterirken buna karşın % uzamada artış gösterdiği tespit edilmiştir. Temperleme uygulanmayan kaynaklı bağlantılarda kopma ısının tesiri altında kalan bölgesinde (ITAB) meydana gelirken temperleme sonrası kopma ana malzemede olduğu görülmüştür.
587
594

REFERENCES

References: 

Akay, A. A., Kaya, Y., Kahraman, N., (2013). Farklı
özellikteki malzemelerin tozaltı ark kaynak
yöntemi ile birleştirilmesi ve birleştirmelerin
tahribatlı ve tahribatsız muayenesi, SAÜ. Fen Bil.
Dergisi, 17, 1, 85-96.
593
Temperleme İşleminin Tozaltı Kaynak Yöntemi ile Birleştirilen Mikroalaşımlı Çeliklerin Mekanik
Özelliklerine Etkisi
Defa, L., Feng, H,, Shisen Wa., Yuzhang, X.,
Shuqing, X., Tao X., (2012). Effect of tempering
temperature on microstructures and properties of
niobium and titanium microalloying low carbon
bainite steel, 2nd International Conference on
Electronic & Mechanical Engineering and
Information Technology (EMEIT-2012),1542-
1545, Liaoning.
Defa, L., Feng, H,, Shisen Wa., Yuzhang, X.,
Shuqing, X., Tao X., (2012). Effect of cooling
process after rolling on microstructure and
property of Nb-Ti micro-alloyed low-carbon
bainite steel, 2nd International Conference on
Electronic & Mechanical Engineering and
Information Technology (EMEIT-2012),1577-
1580, Liaoning.
Durgutlu, A., Kahraman, N., Gülenç, B., (2012).
Tozaltı Ark Kaynağında Kaynak Tozunun
Mikroyapı ve Mekanik Özelliklere Etkisinin
İncelenmesi, Gazi Üniversitesi Endüstriyel
Sanatlar Eğitim Fakültesi Dergisi,10,1-8.
Erden M.A., Gündüz, S., Türkmen, M., Karabulut,
H., (2014). Microstructural characterization and
mechanical properties of microalloyed powder
metallurgy steels, Materials Sci. Eng. A 616, 201–206.
Erden, M.A., Gündüz, S., Çaligülü, U.,. Boz, M.,
(2016). Tozaltı Kaynak Yöntemi ile Birleştirilen
Alaşımsız ve Hardoks Çeliklerin Mikroyapı Ve
Sertlik Özelliklerinin Araştırılması, 4.
Uluslararası Kaynak Teknolojileri Konferansı ve
Sergisi, 784-792, G.Ü., Gaziantep.
Erengin, A., (2009). Ark esaslı kaynak
yöntemleriyle yapılan uygulamalarda, kutuplama
durumu ile ilave malzeme-ergime verimi
ilişkisinin incelenmesi, Yüksek Lisans Tezi,
Yıldız Teknik Üniversitesi, İstanbul.
Gladman, T, (1997). The physical metallurgy of
microalloyed steels, 1st ed., The institute of
Materials, London.
Gondoh, H., Sato, M., Kanaya, K., Miyasaka, A.,
Yoshida I., (1981). Behaviour of nitrogen,
nitrides, carbides in weld HAZ, Trans. of Iron
and Steel Inst. of Japan, 10,444-448.
Gunaraj, V., Murugan N., (1999). Prediction and
comparison of the area of the heat effected zone
for the bead on plate and bead on joint in SAW of
pipes, J. Mater. Process. Technol. 95, 246-261.
Kara, S., Korkut, M. H., (2012). Zırh Çeliklerinde
Kaynak Ağzı Tasarımının Metalurjik ve Mekanik
Özelliklere Etkisinin Araştırılması, Makine
Teknolojileri Elektronik Dergisi,9,1, 35-45.
Karabulut, H., Türkmen, M., Erden, M.A., Gündüz,
S., (2016). Effect Of Different Current Values On
Microstructure And Mechanical Propertıes Of
Microalloyed Steels Joıned By Submerged Arc
Weldıng Method, 4. Uluslararası Kaynak
Teknolojileri Konferansı ve Sergisi, 109-117,
G.Ü., Gaziantep.
Kaynar, A., Gündüz, S., Türkmen, M., (2013).
Investigation on the behaviour of medium carbon
and vanadium microalloyed steels by hot forging
test, Materials and Design 51,819-825.
Lawrow, P., (2000). Welding Considerations with
High-Strength Steel, Modern steel constructions,
August, the United States.
Lord, M., (1998). Interpass temperature and the
welding of strong steels, Welding in the World,
41,452-459.
Ollilainen, V., Kasprzak, W., Hollapa L., (2003).
The effect of slicon, vanadium and nitrogen on
the microstructure and hardness of air cooled
medium carbon low alloy steel, Journal of
Metarials Processing Technology, 134,405-412.
Peng, Y., Wuzhu C., Zuze X., (2001). Study of high
toughness ferrite wire for submerged arc welding
of pipeline steel, Materials
Characterization,47,67-73.
Reicher, K., Hanus, F., Wolf P., (2013). Structural
Steels of 690 MPa Yield Strength, State of Art,
Dillinger Hütte Quality Department,
Germany,597-604,Dillingen.
TSE, (2011). Metalik Malzemelerin Üzerinde
Tahribatlı Deneyler: Çekme Deneyi, TS EN ISO
4136.
Türkmen, M., Karabulut, H., Erden, M.A., Gündüz
S., (2016). Tozaltı Kaynak Yöntemi ile
Birleştirilen Mikroalaşımlı Çeliklerde
Normalizasyon işleminin Mikroyapı ve Mekanik
Özelliklere Etkisi, 4. Uluslararası Kaynak
Teknolojileri Konferansı ve Sergisi, 793-801,
G.Ü., Gaziantep.
Türkmen, M., Karabulut, H., Erden, M.A., Gündüz,
S., (2014). The Effect of Different Current Value
on Microstructure and Mechanical Properties of
non-alloy Structural Steels Joined by Submerged
Arc Welding Method, 15th International
Materials Symposium (IMSP’2014),177-185,
P.Ü., Denizli.
Willms, R., (2008). High strength steels in steel
construction: Application and processing,
Proceedings of the 5th European Conference on
Steel and Composite Structures, EUROSTEEL,
1083, Graz.
Yılmaz, R., Çelik, F., Tümer, M., (2012). Özlü Tel
Ark Kaynağı ile Birleştirilen Yüksek
Mukavemetli Düşük Alaşımlı Çeliklerin Çekme
Dayanımının İncelenmesi, International Iron &
Steel Symposium, 02-04 April,789-796,Karabük.

Thank you for copying data from http://www.arastirmax.com