You are here

Nanosilika ve Polimerik Destek Malzemelerin Sulu Ortamlardan Cr(VI) İyonlarını Uzaklaştırma Performanslarının İyonik Sıvı Emdirilerek Geliştirilmesi

Improvement of the Sorption Performance of Nanosilica and Polymeric Solid Supports by Impregnation with Ionic Liquid for the Removal of Cr(VI) Ions from Aqueous Solutions

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, supported ionic liquid phase (SILP) adsorbents were prepared by immobilizing the ionic liquids (ILs) onto nanosilica and styrene-divinylbenzene copolymer (SDVB) particles for the removal of hexavalent chromium, Cr(VI) ions from aqueous solutions. Three types of ionic liquids such as tricapryl methyl ammonium nitrate [A336][NO3], tricapryl methyl ammonium chloride (Aliquat® 336) and 1-ethyl-3- methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIMTf2N) were successfully impregnated onto solid supports by following physical impregnation method through ultrasonication. The structural and morphological characterizations of the adsorbents were investigated by FTIR, SEM, and BET analysis. The thermal stabilities of the ionic liquid impregnated solid particles were also characterized by TGA analysis. Metal sorption performances of the prepared sorbents were investigated by considering Cr(VI) ions’ sorption regarding the thermodynamic and kinetic aspects. The effects of various analytical parameters on the sorption of Cr(VI) ions such as IL loading ratio, pH of the solution, adsorbent dosage, initial metal ion concentration were studied. Cr(VI) ions were quantitatively adsorbed in the pH range of 2-4 with the impregnation ratio of 1 g-IL/gsupport by all type of adsorbents. Moreover, the removal percentages of chromium ions were found to be 99.53%, 99.50% and 100% for TT600-TS, MOX80-TS and XAD-A, respectively. Sorption isotherms were also fitted with Langmuir equation and they were exhibited favorable sorption behavior.
Abstract (Original Language): 
Bu çalışmada, sulu ortamlardan hekzavalent krom, Cr(VI) iyonlarının uzaklaştırılması için destekli iyonik sıvı faz (SILP) tutucular, iyonik sıvıların nanosilika ve polimerik destek malzemelere tutuklanması ile hazırlanmıştır. Trikapril metil amonyum nitrat [A336][NO3], trikapril metil amonyum klorür (Aliquat® 336) ve 1-etil-3-metilimidazolyum bis(triflorometilsülfonil)imid (EMIMTf2N) olmak üzere üç çeşit iyonik sıvı, ultrases varlığında fiziksel emdirme yöntemi izlenerek katı destek malzemelere başarı ile emdirilmiştir. Hazırlanan tutucuların modifikasyon öncesi ve sonrası kimyasal ve morfolojik yapılanmaları, FTIR, SEM ve BET analizleri ile incelenmiştir. Ayrıca, iyonik sıvı emdirilmiş katı taneciklerin ısıl davranışlarındaki değişim, TGA analizleri ile tanımlanmıştır. Hazırlanan tutucuların Cr(VI) iyonlarını tutma başarımları ise termodinamik ve kinetik davranışları temelinde incelenmiştir. İyonik sıvı yükleme oranı, çözelti pH’ı, tutucu miktarı, metal iyon derişiminin başlangıç değeri gibi analitik değişkenlerin tutucuların adsorplama verimi üzerine etkileri incelenmiştir. Hazırlanan tüm tutucu türleri için çözelti pH’ının 2-4 aralığında ve emdirme oranının 1 giyonik sıvı/g-destek malzeme olduğu koşullarda Cr(VI) iyonlarının dikkate değer bir biçimde uzaklaştırıldığı gözlemlenmiştir. Bununla birlikte, TT600-TS, MOX80-TS ve XAD-A tutucuları için krom iyonu uzaklaştırma yüzdeleri sırasıyla 99.53%, 99.50% ve 100%, olarak bulunmuştur. Ayrıca tutucuların denge davranışlarının Langmuir Denge İzotermlerine uyduğu sonucuna ulaşılmıştır.
49
70

REFERENCES

References: 

1. Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review. J Environ Manage.
2011; 92 (3): 407–418. DOI: 10.1016/j.jenvman.2010.11.011.
2. Galán B, Castañeda D, Ortiz I. Removal and recovery of Cr(VI) from polluted ground waters: A
comparative study of ion-exchange technologies. Water Res. 2005; 39 (18): 4317–4324. DOI:
10.1016/j.watres.2005.08.015.
3. Abdel Salam OE, Reiad NA, ElShafei MM. A study of the removal characteristics of heavy metals
from wastewater by low-cost adsorbents. J Adv Res. 2011; 2 (4): 297–303. DOI:
10.1016/j.jare.2011.01.008.
4. Hosseini SS, Bringas E, Tan NR, Ortiz I, Ghahramani M, Alaei Shahmirzadi MA. Recent progress
in development of high performance polymeric membranes and materials for metal plating
wastewater treatment: A review. J Water Process Eng. 2016; 9: 78–110. DOI:
10.1016/j.jwpe.2015.11.005.
Gizli and Arabacı, JOTCSA. 2017; 1(1): 49-70. RESEARCH ARTICLE
68
5. Patil DS, Chavan SM, Oubagaranadin JUK. A review of technologies for manganese removal
from wastewaters. J Environ Chem Eng. 2016; 4 (1): 468–487. DOI:
10.1016/j.jece.2015.11.028.
6. Aydin H, Bulut Y, Yerlikaya Ç. Removal of copper (II) from aqueous solution by adsorption onto
low-cost adsorbents. J Environ Manage. 2008; 87 (1): 37–45. DOI:
10.1016/j.jenvman.2007.01.005.
7. Ahmad A, Siddique JA, Laskar MA, Kumar R, Mohd-setapar SH, Khatoon A, et al. New
generation Amberlite XAD resin for the removal of metal ions : A review. J Environ Sci. 2015;
31: 104–123. DOI: 10.1016/j.jes.2014.12.008.
8. Gizli N, Arabacı M. Enhanced Sorption of Cu (II) Ions from Aqueous Solution by Ionic Liquid
Impregnated Nano-silica And Nano-alumina Particles. Chem Ind Chem Eng Q J. 2016; in press.
DOI: 10.2298/CICEQ160121034G.
9. Hauman, M., Schönweiz, A., Breitzk, H., Buntkowsky, G., Werner, S. and Szesni N. Supported
Ionic Liquids: Fundamentals and Applications. Vol. 35, Chemical Engineering Technologies.
2012. 1421 p. ISBN (print): 978-3-527-32429-3.
10. Liu JF, Jiang G Bin, Jönsson JÅ. Application of ionic liquids in analytical chemistry. Trends Anal
Chem. 2005; 24(1): 20–7. DOI: 10.1016/j.trac.2004.09.005.
11. Fontanals N, Borrull F, Marcé RM. Ionic liquids in solid-phase extraction. Trends Anal Chem.
2012; 41: 15–26. DOI: 10.1016/j.trac.2012.08.010.
12. Zapp E, Brondani D, Vieira IC, Scheeren CW, Dupont J, Barbosa AMJ, et al. Biomonitoring of
methomyl pesticide by laccase inhibition on sensor containing platinum nanoparticles in ionic
liquid phase supported in montmorillonite. Sensors Actuators, B Chem. 2011; 155(1): 331–339.
DOI: 10.1016/j.snb.2011.04.015.
13. Al-Bishri HM, Abdel-Fattah TM, Mahmoud ME. Immobilization of [Bmim +Tf 2N -] hydrophobic
ionic liquid on nano-silica-amine sorbent for implementation in solid phase extraction and
removal of lead. J Ind Eng Chem. 2012;18(4): 1252–1257. DOI: 10.1016/j.jiec.2012.01.018.
14. Lupa L, Negrea A, Ciopec M, Negrea P, Vodă R. Ionic liquids impregnated onto inorganic support
used for thallium adsorption from aqueous solutions. Sep Purif Technol. 2015; 155: 75–82.
15. Lupa L, Popa A, Dragan ES, Ciopec M, Negrea A, Negrea P. Adsorption performance of the
organic solid support impregnated with ionic liquid in the removal process of Tl(I) from aqueous
solutions. Process Saf Environ Prot. 2016; (1): 1–7. DOI: 10.1016/j.psep.2016.08.015.
16. Navarro R, Ruiz P, Saucedo I, Guibal E. Bismuth(III) recovery from hydrochloric acid solutions
using Amberlite XAD-7 impregnated with a tetraalkylphosphonium ionic liquid. Sep Purif
Technol. 2014; 135: 268–277. DOI: 10.1016/j.seppur.2014.02.023.
17. Kalidhasan S, Santhana Krishna Kumar A, Vidya Rajesh, Rajesh N. An efficient ultrasound
assisted approach for the impregnation of room temperature ionic liquid onto Dowex 1x8 resin
matrix and its application toward the enhanced adsorption of chromium (VI). J Hazard Mater.
2012; 213–214: 249–257. DOI: 10.1016/j.jhazmat.2012.01.093.
18. Kabay N, Cortina JL, Trochimczuk A, Streat M. Solvent-impregnated resins (SIRs) - Methods of
preparation and their applications. React Funct Polym. 2010; 70 (8): 484–496. DOI:
10.1016/j.reactfunctpolym.2010.01.005.
19. Afkhami A, Saber-Tehrani M, Bagheri H. Simultaneous removal of heavy-metal ions in
wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine. J Hazard
Mater. 2010; 181 (1–3): 836–844. DOI: 10.1016/j.jhazmat.2010.05.089.

Thank you for copying data from http://www.arastirmax.com