Buradasınız

PERMÜTASYON TESTLERİNİN DOĞRUSAL REGRESYONDA KULLANILABİLİRLİĞİNİN İRDELENMESİ

TO EXAMINE THE USABILITY OF PERMUTATION TESTS ON LINEAR REGRESSION

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Generally, F and t tests are used to test significance of linear models and/or their parameters in experimental data analysis. Although these tests are considerably effective in most cases they may be ineffective for some data sets when one or more of the assumptions belongs to the model are not satisfied. In these cases, permutation tests that are not affected by the assumptions can be applied as non-parametric test methods. In this paper, the permutation tests for linear regressions were introduced, and their uses were demonstrated on real biometrical and hypothetically produced data sets. Additionally, two types of permutation (permutation of raw data and permutation of residuals) were also compared for data sets which have Normal, Chi-square, Poisson distributions. As a result, it was obtained that permutation tests can be used to avoid Type I error for linear regression models in all forms of distributions concerned in this study.
Abstract (Original Language): 
Genellikle F ve t testleri deneysel veri analizinde doğrusal modellerin ve/veya parametrelerin önemini test etmek için kullanılır. Bu testler çoğu durumda oldukça etkili olsa da modelin ihtiyaç duyduğu bir ya da daha fazla varsayım sağlanamadığında etkilerini kaybetmektedir. Bu durumda, varsayımlardan etkilenmeyen permütasyon testleri parametrik olmayan bir yöntem olarak uygulanabilmektedir. Bu çalışmada, doğrusal regresyon analizi için permütasyon testleri incelendi. Testin regresyon tekniği ile birlikte kullanımı biyolojik çalışmalardan elde edilen ve yapay olarak üretilen veri kümeleri üzerinde gerçekleştirildi. Ayrıca, permütasyon testlerinin iki türü (ham verinin tam permütasyonu ve kalıntıların permütasyonu) Normal, Ki-kare ve Poisson dağılışları gibi farklı dağılışa sahip veri setleri için karşılaştırılmalı olarak incelendi. Sonuç olarak, bu çalışmada ilgilenilen tüm dağılışlarda permütasyon testlerinin I. Tip hatayı engellemek için kullanılabileceği anlaşıldı.
157-161

REFERENCES

References: 

Abecasis, G.R., Cardon, L.R. ve Cookson, W.O.C., 2000. A General Test of Association for Quantitative Traits in Nuclear Families. Am. J. Hum. Genet. 66: 279-292
Anderson, M.J. ve Legendre, P., 1999. An Empirical Comparison of Permutation Methods for tests of Partial Regression Coefficients in a Linear Model. J. Statist.
Comput. Simul 62: 271-303
Anderson, M.J., 2001. Permutation Tests for Univariate or Multivariate Analysis of Variance and Regression. Can. J. Fish. Aquat. Sci. 58:626-639
Anderson, M.J., 2003. DISTLM v.2.: A FORTRAN Computer Program to Calculate a Distance-Based Multivariate Analysis for Linear Model. Department of Statistics, University of Auckland, New Zelland.
Anderson, M.J. ve Robinson, J., 2001. Permutation Tests for Linear Models. Aust. N. Z. J. Stat. 43(1): 75-88
Bracken, M.B., 2001. On Stratification, Minimization and Protection Against Types 1 and 2 Error. Journal of Clinical Epidemiology, 54: 104 - 107.
H. Önder
Fisher, R.A., 1935. Design of Experiments. Oliver and
Body, Edinburgh.
Gonzalez
, L. ve Manly, B.F.J., 1998. Analysis of Variance
by Randomization with Small Data Sets. Environmetrics
9: 53-65.
Kleinbaum, D.G., Kupper, L., Muller, K.E. ve Nizam, A., 1998. Applied Regression Analysis and Other Multivariable Methods, Duxbury Pess, Pcific grove, 798
page.
Legendre, P., 2000. Comparison of Permutation Methods for Partial Correlation and Partial Mantel Tests. J. Statist. Comput. Simul. 67: 37 - 73.
Lin, S. ve Lee, J.C., 2003. Exact Test in Simple Growth Curve Models and One-Way ANOVA with Equicorrelation Error Structure. Journal of Multivariate Analysis 84: 351 - 368.
Maggini, R., Guisan, A. ve Cherix, D., 2002. A Stratified
Approach to Modeling the Distribution of a Threatened Ant Species in the Swiss National Park. Biodiversity and Conservation 11: 2117 - 2141. Makarenkov, V. ve Legendre, P., 2002. Nonlinear Redundancy Analysis and Canonical Correspondence Analysis Based on Polynomial Regression. Ecology 83:
1146-1161.
Manly, B.F.J., 1997. Randomization, Bootstrap and Monte Carlo methods in biology, 2nd edition. Chapman and Hall, London.
Nichols, T.E. ve Holmes, A.P., 2001. Nonparametric permutation tests For Functional Neuroimaging: A Primer with Examples. Human Brain Mapping 15:1-25
O'Gorman, T.W., 2001. An Adaptive Permutation Test procedure for Several Common Tests of Significance. Computational Statistics & Data Analysis 35: 335 - 350
Önder,
H
. ve Cebeci, Z., 2005. Use of Permutation Test on Nested Models. International Congress on Information Technology in Agriculture, Food and Evnironment 312¬315. October 12-15 2005, Adana, Turkie.
Tanizaki, H., 2001. On Small Sample Properties of Permutation Tests: An Independence Test between Two Samples and Significance Test for Regression Models. Accessed at [http://ht.econ.kobe-
u.ac.jp/~tanizaki/cv/working/permute.pdf] Son erişim
tarihi: 19.06.2003
Tusell, F., 2001. A Permutation Test for Randomness with Power Against Smooth Variation. Statistics and
Computing 11: 147 - 154.

Thank you for copying data from http://www.arastirmax.com