Buradasınız

Genleştirilmiş kil agregalı betonların ısıl özelliklerinin incelenmesi

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Inefficient energy consumption and energy cost increase due to inadequate insulation of structures. These increases due to missing or incorrect insulation applications can be reduced by selection and production of construction materials with low thermal conductivity. The aggregates have a great importance in the production of low-density concrete. Aggregates can be obtained as natural or artificial. Expanded clays (EC), occur as a result of sudden exposure of the clay to high temperatures. With the emergence of the gases in chemical structure, gas-filled pores appear in structures. In this way, the volume clays increase between 1.5 and 6 times of their initial volume. The products such as lime, coke and fuel-oil are added to the clay mud for increase the expansion. There is no production of EC in Turkey and it is not widely used. In the studies, compatible relationships are determined between density and thermal conductivity. The great part of the consumed energy is used for heating of buildings. For this reason, production of building components from the materials having low thermal conductivity is extremely important. To reduce heat losses in buildings, coating of building components is applied as a method with very low thermal conductivity materials. Another method is to reduce the thermal conductivity of building components. In this study EC as aggregate were used in the concrete material as building components and thermal properties of the produced concrete were investigated. 0-2 mm, 2-4 mm and 4-8 mm grain diameter expanded clays were added to the prepared samples by weight of 20%, 40%, 60% and 80%. for prepared samples. Containing different grain size and proportions mixtures prepared as 12 different samples were poured into patterns suitable with meter probes. In the study CEM IV / B (P) 32.5 R-type pozzolanic cement was used. Samples were left to dry for 28 days. Densities of the samples were determined thermal conductivity and specific heat were measured and thermal diffusivity coefficient was obtained from these results. Measurement device performs measurements by using in accordance with DIN 51046. It was seen from the results that density and thermal conductivity decreased and the specific heat was observed to increase EC aggregate in grain size and weight. In this study, which was conducted to produce low density concrete, it was seen that the thermal conductivity of samples decreased on the other hand specific heat values increased depending on EC grain size and amount of aggregate material. Thermal conductivity was between 0.459 W/mK and 0.222 W/mK, specific heat capacity was in the range of 867 J/kgK to 2254 J/kgK, density was changing from 1810 kg/m3 to 531 kg/m3 and the thermal diffusivity was between 2.92x10-7 m 2 /s and 1.86x10-7 m 2 /s. A good polynomial relationship was found between the density and thermal conductivity. The correlation coefficient (R2 ) was obtained to be 0.994, 0.999 and 0.981 for the grain size of 0-2 mm, 2-4 mm and 4-8 mm, respectively. Compared to many other similar building materials, very low thermal conductivity of EC aggregate concretes can be considered as an important advantage.
Abstract (Original Language): 
Tüketilen enerjinin büyük bölümü yapıların ısıtılması için harcanmaktadır. Bu nedenle yapı bileşenlerinin düşük ısıl iletkenliğe sahip malzemelerden üretilmesi son derece önemlidir. Yapılardaki ısı kayıplarını azaltmak için, yapı bileşenlerini, ısıl iletkenliği çok düşük malzemelerle kaplamak bir yöntem olarak uygulanmaktadır. Diğer bir yöntem de yapı elemanlarının ısıl iletkenliğini düşürmektir. Bu çalışmada yapı elamanı olarak kullanılabilecek betonarme malzemelerde, agrega olarak genleştirilmiş kil (GK) kullanılmış ve üretilen betonların ısıl özellikleri araştırılmıştır. Hazırlanan numunelere, 0-2 mm, 2-4 mm ve 4-8 mm tane çaplarında GK, ağırlıkça %20, %40, %60 ve %80 oranında eklenmiştir. Farklı tane çap değerleri ve oranları içeren 12 çeşit numune, ölçüm cihazı problarına uygun şekilde hazırlanan kalıplara dökülmüştür. Çalışmada CEM IV/B (P) 32.5 R tipi puzolanik çimento kullanılmıştır. Numuneler 28 gün kurumaya bırakılarak, bekletilmiştir. Yoğunlukları tespit edilen numunelerin, ısıl iletkenlik katsayıları ve özgül ısı değerleri ölçülmüştür. Ölçülen bu sonuçlardan ısıl yayınım katsayısı hesaplanmıştır. Ölçüm cihazı, DIN 51046 normuna göre sıcak tel metodunu kullanarak ölçüm yapmaktadır. Elde edilen bulgularda, tane çapı ve ağırlıkça GK agregasının artması sonucu, numune yoğunluğu ve ısıl iletkenliğinin azaldığı, özgül ısının ise arttığı görülmüştür. Sonuçlar, birçok yapı malzemesiyle mukayese edilmiştir. 4-8 mm tane çaplı ve %80 GK içeren numunenin ısıl iletkenlik değerinin çimento harcının ısıl iletkenlik değerinden %69 daha düşük olduğu belirlenmiştir.

REFERENCES

References: 

Al Rim, K., Ledhem, A., Douzane, O., Dheilly,
R.M., Queneudec, M., (1999). Influence of the
proportion of wood on the thermal and
mechanical performance of clay-cement-wood
composites, Cement and Concrete Composites,
21, 269-276.
Arıöz, O., Kılınç, K., Karasu, B., Kaya, G., Arslan,
G., Tuncan, M., Tuncan A., Korkut, M., Kıvrak,
S., (2008). A preliminary on the properties of
lightweight expanded clay aggerate, Journal of
the Australian Ceramics Society, 44(1), 23-30.
Benazzouk, A., Douzane, O., Mezreb, K., Laidoudi,
B., Queneudec, M., (2008). Thermal conductivity
of cement composites containing rubber waste
particles: Experimental study and modelling,
Construction and Building Materials, 22, 573-
579.
Biçer, Y., Çelik, N., Devecioğlu, A., (2011).
Investigation of thermal and mechanical
properties of expanded clay mixed concrete, 17th
International Conference on Thermal
Engineering and Termogrammetry, Budapest.
Biçer, Y., Devecioğlu, A., (2011). Utılızatıon Of Fly
Ash And Polypropylene Wastes In The
Productıon Of A New Porous Composıte
Materıal, 17th International Conference on
Thermal Engineering and Termogrammetry,
Budapest.
Çanakçı, H., Demirboğa, R., Karakoç, M.B., Şirin,
O., (2007). Thermal conductivity of lime Stone
from Gaziantep (Turkey), Building and
Environment, 42, 1777-1782.
Çengel, Y., (2011). Isı ve kütle transferi, Güven
Yayınevi, İzmir.
Demirboğa, R., Gül, R., (2003). Thermal
conductivity and compressive strength of
expanded perlite aggregate with mineral
admixtures, Energy and Buildings, 35, 1155-
1159.
Demirboğa, R., Gül, R., (2003). The effects of
expanded perlite aggregate, silica fume and fly
ash on the thermal conductivity of lightweight
concrete, Cement and Concrete Research, 33,
723-727.
Devecioğlu, A.G., (2012). Kitre katkılı
genleştirilmiş kil agregalı betonların ısıl ve
mekanik özelliklerinin analizi, Doktora tezi, FÜ
Fen Bilimleri Enstitüsü, Elazığ.
Gündüz, L., Şapçı, N., Bekar, M., (2006). Genleşmiş
kilin hafif agrega olarak kullanılabilirliği, Kil
Bilimi ve Teknolojisi Dergisi, 1(2), 43-49.
Incropera, F.P., DeWitt, D.P., (2001). Isı ve kütle
geçişinin temelleri, Literatür Yayıncılık Ltd. Şti.,
İstanbul.
Kamseu, E., Nait-Ali, B., Bignozzi, M.C., Leonelli,
C., ROssignol, S., Smith, D.S., (2012). Bulk
composition and microstructure dependence of
effective thermal conductivity of porous
inorganic polymer cements, Journal of the
European Ceramic Society, 32, 1593-1603.
Khedari, J., Suttisonk, B., Pratinthong, N.,
Hirunlabh, J., (2001). New lightweight composite
construction materials with low thermal
conductivity, Cement and Concrete Composites,
23, 65-70.
Özışık, N., (1985). Heat transfer, McGraw-Hill
Book Company, New York.
Subaşı, S., (2009). Genleştirilmiş kil agregası ile
taşıyıcı hafif beton üretimi, Gazi Üniversitesi
Müh. Mim. Fak. Dergisi, 24, 559-567.
Uysal, H., Demirboğa, R., Şahin, R., Gül, R., (2004).
The effects of different cement dosages, slumps,
and pumice aggregate ratios on the thermal
conductivity and density of concrete, Cement and
Concrete Research, 34, 845-848.

Thank you for copying data from http://www.arastirmax.com