Buradasınız

Certain Classes of Harmonic Functions Associated with Dual Convolution

Journal Name:

Publication Year:

AMS Codes:

Abstract (2. Language): 
In this paper, we investigate several properties for the harmonic classes MH (', ; t, ,) and MH (', ; t, ). We obtain coefficient bounds, distortion theorem, extreme points, convolution condition, convex combinations and integral operator for these classes.
296-310

REFERENCES

References: 

[1] O. P. Ahuja. Palnar harmonic univalent and related mappings, Journal of Inequalities in
Pure and Applied Mathematics, 6, 4, 122, 1-18. 2005.
[2] F. M. Al-Aoboudi. On univalent functions defined by a generalized operator, International
Journal of Mathematics and Mathematical Sciences, 27, 1429-1436. 2004.
[3] M. K. Aouf. Certain subclasses of multivalent prestarlike functions with negative coefficients,
Demonstratio Mathematica, 40, 4, 799-814. 2007.
[4] M. K. Aouf and T. M. Seoudy. On sandwich theorems of p-valent analytic functions defined
by the integral operator, Arabian Journal of Mathematics, 1-12. 2012.
[5] S. D. Bernardi. Convex and starlike univalent functions, Transactions of the American
Mathematical Society, 135, 429-446. 1969.
REFERENCES 309
[6] D. Breaz. Certain integral operators on the classes M(i) and N(i), Journal of Inequalities
and Applications, Art. ID 719354. 2008.
[7] J. Clunie and T. Sheil-Small. Harmonic univalent functions, Annales Academiae Scientiarum
Fennicae. Series A I. Mathematica, 9, 3-25. 1984.
[8] L. I. Cotirla. Harmonic univalent functions defined by an integral operator, Acta Universitatis
Apulensis, 17, 95-105. 2009.
[9] R. M. El-Ashwah and M. K. Aouf. Some properties of new integral operator, Acta Universitatis
Apulensis, 24, 51-61. 2010.
[10] R. M. El-Ashwah and M. K. Aouf. Differential subordination and superordination for certain
subclasses of analytic functions involving an extended integral operator, Acta Universitatis
Apulensis, 28, 341-350. 2011.
[11] J. M. Jahangiri, G. Murugusundaramoorthy, and K. Vijaya. Salagean-type harmonic univalent
functions, Southwest Journal of Pure and Applied Mathematics, 2, 77-82. 2002.
[12] R. J. Libera, Some classes of regular univalent functions, Proceedings of the American
Mathematical Society, 16 (1965), 755-758.
[13] S. Owa and H. M. Srivastava. Some generalized convolution properties associated with
certain subclasses of analytic functions, Journal of Inequalities in Pure and Applied Mathematics,
3, Art. 3, 1-13. 2002.
[14] A. L. Pathak, K. K. Dixit, and R. Agarwal. A new subclass of harmonic univalent functions
associated with Dziok-Srivastava operator, International Journal of Mathematics
and Mathematical Sciences, 1-10. 2012.
[15] S. Porwal. Study of certain classes related to analytic and harmonic univalent functions
[Ph.D. thesis], Chhatrapati Shahu Ji Maharaj University, Kanpur, India, (2011).
[16] S. Porwal and K.K. Dixit. An application of certain convolution operator involving hypergeometric
functions, Journal of Rajasthan Academy of Physical Sciences, 9, 2, 173-186.
2010.
[17] J. K. Prajapat. Subordination and superordination preserving properties for generalized
multiplier transformation operator, Mathematical and Computer Modelling, 1-10. 2011.
[18] G. S. Salagean. Subclasses of univalent function, Lecture Notes in Mathematics (Springer-
Verlag), 1013, 368-372. 1983.
[19] B. A. Uralegaddi, M. D. Ganigi and S. M. Sarangi. Univalent functions with positive coefficients,
Tamkang Journal of Mathematics, 25, 3, 225-230. 1994.
[20] S. Yalçin, M. Öztürk, and M. Yamankaradeniz. On the subclass of Salagean-type harmonic
univalent functions, Journal of Inequalities in Pure and Applied Mathematics, 8, 2, Art.
54, 1-9. 2007.
REFERENCES 310
[21] E. Ya¸sar and S. Yalçin. Generalized Salagean-type harmonic univalent functions, Studia
Universitatis BabeÂÿs-Bolyai ôs Series Mathematica, 57, 3, 395-403. 2012.

Thank you for copying data from http://www.arastirmax.com