Buradasınız

Sandwich Theorems for Some Analytic Functions Defined by Convolution

Journal Name:

Publication Year:

AMS Codes:

Abstract (2. Language): 
For certain analytic functions defined by convolution products, we obtain several applications of first order differential subordination and superordination, that generalize some previous results obtained by different authors.
1-12

REFERENCES

References: 

[1] R. M. Ali, V. Ravichandran and K. G. Subramanian, Differential sandwich theorems for
certain analytic functions, Far East J. Math. Sci., 15(2004), no. 1, 87–94.
[2] F. Al-Oboudi, On univalent functions defined by a generalized S˘al˘agean operator, Internat.
J. Math. Math. Sci., 27(2004), 1429–1436.
[3] M. K. Aouf, F. M. Al-Oboudi and M. M. Haidan, On some results for -spirallike and -
Robertson functions of complex order, Publ. Institute Math. Belgrade, 77(2005), no. 91,
93–98.
[4] T. Bulboac˘a, A class of superordination-preserving integral operators, Indag. Math. (N. S.),
13(2002), no. 3, 301–311.
[5] T. Bulboac˘a, Classes of first order differential superordinations, Demonstratio Math.
35(2002), no. 2, 287–292.
[6] A. C˘ata¸s, G. I. Oros and G. Oros, Differential subordinations associated with multiplier
transformations, Abstract Appl. Anal., 2008 (2008), ID 845724, 1–11.
[7] N. E. Cho and T. G. Kim, Multiplier transformations and strongly close-to-convex functions,
Bull. Korean Math. Soc., 40(2003), no. 3, 399–410.
[8] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized
hypergeometric function, Appl. Math. Comput., 103(1999), 1–13.
[9] J. Dziok and H. M. Srivastava, Some subclasses of analytic functions with fixed argument of
coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp.
Math., 5(2002), 115–125.
REFERENCES 12
[10] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the
generalized hypergeometric function, Integral Transform. Spec. Funct., 14(2003), 7–18.
[11] Yu. E. Hohlov, Operators and operations in the univalent functions, Izv. Vysh. Ucebn.
Zaved. Mat., 10(1978), 83–89 (in Russian).
[12] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc.,
16(1965), 755–658.
[13] S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordinations,
Michig. Math. J., 32(1985), 185–195
[14] S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex
Variables, 48(2003), no. 10, 815–826.
[15] G. Murugusundaramoorthy and N. Magesh, Differential subordinations and superordinations
for analytic functions defined by the Dziok-Srivastava linear operator, J. Inequal.
Pure Appl. Math., 7(4)(2006), Art. 152, 1–9.
[16] M. Obradovi´c, M. K. Aouf and S. Owa, On some results for starlike functions of complex
order, Publ. Institute Math. Belgrade, 46(60)(1989), 79–85.
[17] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions,
Canad. J. Math., 39(1987), 1057–1077.
[18] W. C. Royster, On the univalence of a certain integral, Michigan Math. J., 12(1965), 385–
387.
[19] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975),
109–115.
[20] G. S. S˘al˘agean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-
Verlag) 1013, (1983), 362–372.
[21] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differantial sandwich theorems
for some subclasses of analytic functions, J. Austr. Math. Anal. Appl., 3(1)(2006),
Art. 8, 1–11.
[22] H. M. Srivastava and A. Y. Lashin, Some applications of the Briot-Bouquet differential
subordination, J. Inequal. Pure Appl. Math., 6(2)(2005), Art. 41, 1–7.

Thank you for copying data from http://www.arastirmax.com