Buradasınız

Transparent Ore Extensions over Sigma-(∗)-rings

Journal Name:

Publication Year:

Author Name
Abstract (2. Language): 
In this paper we introduce a stronger type of primary decomposition of a Noetherian ring. We call such a ring a Transparent ring and show that if R is a commutative Noetherian ring, which is also an algebra over Q (the field of rational numbers);  an automorphism of R and  a -derivation of R such that ((a)) = ((a)), for all a ∈ R. Further more if a(a) ∈ P(R) implies that a ∈ P(R), (P(R) the prime radical of R), then R[x;,] is a Transparent ring.
221-229

REFERENCES

References: 

[1] S. Annin, Associated primes over skew polynomial rings, Comm. Algebra, Vol. 30,
2511-2528. MR1940490 (2003k:16037). 2002.
[2] V. K. Bhat, Decomposability of iterated extensions, Int. J. Math. Game Theory Algebra,
Vol. 15(1), 45-48. MR2257766. 2006.
[3] V. K. Bhat, Ring extensions and their quotient rings, East-West J. Math., Vol. 9(1), 25-
30. MR2444121 (2009f:16049). 2007.
[4] V. K. Bhat and Neetu Kumari, Transparency of (∗)-rings and their extensions, Int. J.
Algebra , Vol. 2(19), 919-924. MR2481211 (2010d:16032). 2008.
[5] V. K. Bhat, Associated prime ideals of skew polynomial rings, Beitrage Algebra Geom.,
Vol. 49(1), 277-283. MR2410584 (2009e:16046). 2008.
[6] V. K. Bhat, Transparent rings and their extensions, New York J. Math., Vol. 15, 291-299.
MR2530150 (2010j:16060). 2009.
[7] V. K. Bhat, A note on completely prime ideals of Ore extensions, Internat. J. Algebra
Comput., Vol. 20(3), 457-463. MR2658421. 2010.
[8] W. D. Blair, L.W. Small, Embedding differential and skew polynomial rings into artinian
rings, Proc. Amer. Math. Soc., Vol. 109(4), 881-886. MR1025276 (90k:16003). 1990.
[9] C. Faith, Associated primes in commutative polynomial rings, Comm. Algebra, Vol. 28,
3983-3986. MR1767601 (2001a:13038). 2000.
[10] K. R. Goodearl, R.B. Warfield, An introduction to Non-commutative Noetherian rings.
Camb. Uni. Press. MR1020298 (91c:16001). 1989.
[11] K. R. Goodearl and E. S. Letzter, Prime ideals in skew and q-skew polynomial rings,
Memoirs of the Amer. Math. Soc., No. 521. MR1197519 (94j:16051). 1994.
[12] M. Hazewinkel, N. Gubareni and V. V. Kirichenko, Algebras, rings and modules;
Vol. 1, Mathematics and its applications, Kluwer Academic Press. MR2106764
(2006a:16001). 2004.
[13] J. Krempa, Some examples of reduced rings, Algebra Colloq., Vol. 3(4), 289-300.
MR1422968 (98e:16027). 1996.
[14] T. K. Kwak, Prime radicals of skew-polynomial rings, Int. J. Math. Sci., Vol. 2(2), 219-
227. MR2061508 (2006a:16035). 2003.
[15] A. Leroy and J. Matczuk, On induced modules over Ore extensions, Comm. Algebra,
Vol. 32(7), 2743-2766. MR2099932 (2005g:16051). 2004.
[16] H. E. Nordstorm, Associated primes over Ore extensions, J. Algebra, Vol. 286(1), 69-
75. MR2124809 (2006c:16049). 2005.
[17] G. Y. Shin, Prime ideals and sheaf representations of a pseudo symmetric ring, Trans.
Amer. Math. Soc., Vol. 184, 43-60. MR0338058 (49:2825). 1973.
[18] O. Zariski and P. Samuel, Commutative Algebra, Vol. I, D. Van Nostrand Company, Inc.
MR0384768 (52:5641). 1967.

Thank you for copying data from http://www.arastirmax.com