Buradasınız

TRIP ÇELİKLERİNİN OTOMOTİV ENDÜSTRİSİNDE KULLANIMININ İNCELENMESİ

THE INVESTIGATION OF THE USE OF TRIP STEELS IN AUTOMOTIVE INDUSTRY

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Turkey has started the integrated steel production with the foundation of Karabük Iron-Steel Factory which is the first heavy industry attempt of the country. Even though Turkish Iron-Steel industry has been exposed to various crises until the 21st century, it took an important step into a growth process starting from the year 2001. However, to keep up with the sectoral changes developing in the global economy and to direct the production in accordance with such developments have become a requirement. For this purpose, it might be an important objective to produce steel for the automotive industry that has come into prominence in our country with a high level of added value and income. Production of light and advanced high-strength steel for Turkish and World industries is a very critical technology. In developed countries, the steel industry is based on integrated plants and has been directed to products such as advanced high-strength steel, stainless steel, etc. that have a very high added value. In spite of that different kinds of steel sheet are being produced in our country, the dual phase steel which has been intensively utilized especially in recent years is being produced in low quantities whereas TRIP steel, which shall be used more with the purpose of reducing the weight of the vehicles in future, is not being produced. The literature study has done considering most recent research shaped within the frame of original studies conducted in recent years. In this study, TRIP steels have been introduced in comparison with other steels used in automobiles based on certain criteria such as microstructure, tensile strength, crash (impact), formability and fatigue. Furthermore, a study has also been conducted about the utilization of the TRIP steel in automotive industry and manufacturability in Turkey.
Abstract (Original Language): 
Türkiye ilk ağır sanayi hamlesi olan Karabük Demir-Çelik Fabrikasının kuruluşuyla birlikte entegre çelik üretimine başlamıştır. Türk Demir-Çelik endüstrisi, 21. Yüzyıla kadar olan süreçte farklı krizlere maruz kalmakla birlikte 2001 yılından itibaren hızlı bir büyüme sürecine girmiştir. Fakat küresel ekonomide gelişen sektörel değişimlere ayak uydurmak ve üretimi o yönlere çevirmek gereksinim haline gelmiştir. Bu amaçla ülkemizde önemli bir sektör olarak kendini gösteren, katma değeri ve kazanımı yüksek olan otomotiv endüstrisine çelik üretmek önemli bir amaç olabilir. Türkiye ve Dünya endüstrileri için gelişmiş hafif yüksek mukavemetli çelik üretimi kritik bir teknolojidir. Gelişmiş ülkelerde çelik endüstrisi entegre tesislere dayalı olup, katma değeri yüksek; gelişmiş yüksek mukavemetli çelik, paslanmaz çelik v.b. gibi ürünlere yönelmiştir. Ülkemizde farklı çelik sac türleri üretilmekle beraber özellikle son yıllarda yoğun bir şekilde kullanılan çift fazlı çelik düşük miktarlarda üretilmekte, ilerleyen yıllarda otomobil ağırlığını azaltmak amacıyla kullanımı artacak olan TRIP çeliği ise üretilmemektedir. Literatür çalışması son yıllarda yapılan özgün çalışmalar çerçevesinde biçimlendirilmiştir. Çalışmada TRIP çeliklerinin otomobillerde kullanılan diğer çeliklerle mikroyapı, çekme dayanımı, çarpma (darbe), şekillendirilebilme ve yorulma özellikleri gibi kriterlere bağlı olarak karşılaştırmalı bir biçimde sunulmuştur. Ayrıca TRIP çeliğinin otomotiv endüstrisinde kullanımı ve Türkiye’de üretilebilirliği hakkında da bir çalışma gerçekleştirilmiştir.
701
712

REFERENCES

References: 

1. Dokuzuncu Kalkınma Planı, 2007-2013, “Ana
Metal Sanayi”, Özel İhtisas Komisyonu
Raporu, Ankara 2007.
2. “Türk Demir Çelik Sektörü”, Türkiye DemirÇelik
Üreticileri Derneği, 2009.
(http://www.dcud.org.tr/dcs.aspx).
3. Tetsuya, M., Hasegawa, K., Kawabe, H., “UHSS
Sheets for Bodies, Reinforcement Parts, and Seat
Frame Parts of Automobile Ultra High-Strength
Steel Sheets Leading to Great Improvement in
Crashworthiness” JFE Technical Report, Vol 4,
38-43, 2004.
4. Manuel, F., Christoph, M.S., Colin, V., “A
Regression on Climate Policy: The European
Commission’s Legislation to Reduce CO2
Emissions from Automobiles”, Transportation
Research Part A, 2010.
doi:10.1016/j.tra.2009.12.001
5. Volkan, E.E., Arısoy, C.F., Kelami, Ş.,
“Otomotiv Endüstrisinde Çelikten Vazgeçilebilir
Mi?”, Metal Dünyası, Vol 125, 74-81, 2003.
6. Ushioda, K., “Recent Developments in Steel
Sheers”, Scandinavian Journal of Metallurgy,
Vol 28, 33-39, 1999.
7. SSAB Swedish Steel, “Highter Strength-Lower
Weight: Educing the Body Weighty Using Extra
and Ultra Hight Strength Steel”, GB 2000 Lygner
Form& Tryck 2004.
8. “21st Century Steel”, World Steel Assosiation,
2008-2009 Update, 1-32, 2009.
(http://www.worldsteel.org/pictures/publicationfil
es/21st%20century%20steel.pdf
9. Lindsay, B., Harry, E., “Automakers and
Suppliers Accelerate Their Efforts to Reduce
Vehicle Weight by Engineering Them for Greater
Use of Lighter, Stronger Materials”, Mass
Reduction Special Report, 16 March 2009.
10. Akay, D., Kurt, M., “Otomobil Emniyet Kemeri
Kullanılabilirlik Testi”, Gazi Üniversitesi.
Mühendislik-Mimarlık Fakültesi Dergisi, Cilt
21, No 1, 183-191, 2006.
11. AISI Market Development, “An Investment in
Steel’s Future”, American Iron and Steel
Institute, 2002– 2003, Progress Report 2003.
12. “Advanced High-Strength Steels–A Collision
Repair Perspective”, Technical Information for
the Collision Industry, June 12, 2006. (www.icar.
com)
13. “New Study Finds Increased Use of Advanced
High-Strength Steels Helps Decrease Overall
Vehicle Weight”, Automotive Applications
Council, 2010.
(http://www.steel.org/AM/Template.cfm?Section
=Press_Releases9&TEMPLATE=/CM/ContentD
isplay.cfm&CONTENTID=32077)
14. “Advanced High Strength Steel (AHSS)
Application Guidelines”, World Auto Steel,
Version 4.1, 1-171, 08 June 2009.
(www.worldautosteel@org).
15. Hayat, F., Demir, B., Acarer, M., Aslanlar, S.,
“Effect of Weld Time and Weld Current on the
Mechanical Properties of Resistance Spot
Welded IF (DIN EN 10130–1999) Steel”,
Kovove Materials, Vol 47, No 1, 11-17, 2009.
16. Hayat, F., Demir, B., Aslanlar, S., “IF 7315
Çeliklerinin Yapıştırmalı Nokta Direnç Kaynaklı
Birleştirmelerinin İncelenmesi”, 14. Uluslararası
Metalurji ve Malzeme Kongresi, İstanbul, 16-
18 Ekim 2008.
17. Hayat, F., Demir, B., Aslanlar, S., “Nokta Direnç
Kaynak Süresinin IF 7114 Çeliği
Birleştirmelerinin Mekanik Özelliklerine Etkisi”,
IV. Demir Çelik Kongresi, Karabük, 243-250,
1-3 Kasım 2007.
18. Hayat, F., Demir, B., Acarer, M., "0,067C ve
1,74 Mn’lı Çift Fazlı Çeliklerin Mikroyapı-
Dayanım İlişkisi ve Kırılma Davranışları",
Teknoloji Dergisi, Cilt 10, Sayı 1, 111-120,
2007.
19. Speich, GR., “Dual Phase Steels”, Heat Treating,
ASM Handbook, fifth prinnting, 424-429, 1997.
20. Speich, GR., Miller, RL., “Mechanical Properties
of Ferrit-Martensite Steels” In: Kott RA, Morris
JW, editors, “Structure and Properties of
Dual-Phase Steels”, New York: AIME, 1-45,
1979.
21. Erdoğan, M., “The Effect of New Ferrit Content
on Tensile Fracture Behaviour of Dual Phase
Steels”, Journal of Materials Science, Vol 37,
No 17, 3623-3630, 2002.
22. Erdoğan, M., Priestner, R., “Effect of Martensite
Content, its Dispertion and Epitaxial Content on
Bauschinger Behaviour of Dual Phase Steel”,
Materials Science and Technology, Vol 15, No
11, 1273-1284, 1999.
23. Kim, K.J. Chang, G.L., Sunghak L., “Effects of
Martensite Morphology on Dynamic Torsional
Behaviour in Dual Phase Steels”, Scripta
Materialia, Vol 38, No 1, 27-32, 1997.
24. Davies, R.G., “Influence of Martensite
Composition and Content on The Properties of
Dual-Phase Steels”, Metallurgical
Transactions, Vol 18A, 671-679, 1978.
25. The UltraLight Steel Auto Body Programme,
“UltraLight Steel Auto Closures” Final Report,
Porsche Engineering Services, Inc. May 2001.
(www.ulsab-avc.org).
26. Kayalı, E.S., Ensari, C., Silahtaroğlu, S., “Derin
Çekme Kalitesindeki Saclarda Özellikleri
Etkileyen Faktörler”, 3. Ulusal Metalürji
Kongresi, ODTÜ, Ankara, 581-586. Aralık 1979.
27. Öztürk, T., Bor, Ş., Atasoy, E., Alpas, T.,
“Erdemir 6114 Saclarının Derin Çekme
Özelliklerini Etkileyen Faktörler”, Doğa
Mühendislik ve Çevre Dergisi, Vol 1, 318-322,
1987.
TRIP Çeliklerinin Otomotiv Endüstrinde Kullanımının İncelenmesi F. Hayat
Gazi Üniv. Müh. Mim. Fak. Der. Cilt 25, No 4, 2010 711
28. “New Study Finds Increased Use of Advanced
Hıgh-Strength Steels Helps Decrease Overall
Vehicle Weight”, American Iron and Steel
Institute, 2009.
29. “Environmental Case Study Automotive: an
Advanced High-Strength Steel Family Car”,
World Steel Association, 2006.
(www.worldsteel.org).
30. Corus Research, Dev.&Technology, Corporate
Responsibility Report 2007/08.
31. ArcelorMittal, “How Will We Achieve: Safe
Sustainable Steel?”, Corporate Responsibility
Report, 2008.
32. Flat Carbon Europe, “Client Magazine”,
ArcelorMittal, September, 2007.
(www.arcelormittal.com/fce/repository/Update/E
N_UpdateFCE_aug07.pdf)
33. “Arcelor Body Concept”, Arcelor Auto, Arcelor
Group.
34. “50 Years as Steel Supplier to Volvo”, Corus
Research, No. 1, February 2007.
(http://www.productrange.nl/uploadz/m20071026
115451.pdf)
35. Basuki, A., Aernoudt, E., “Influence of Rolling
of TRIP Steel in the Intercritical Region on the
Stability of Retained Austenite”, Journal of
Materials Processing Technology, Vol 89, No
1, 37-43, 1999.
36. Furne´mont, Q., Kempf, M., Jacques, P.J.,
Gorken, M., Delannay, F., “On the Measurement
of the Nanohardness of the Constitutive Phases of
TRIP-assisted Multiphase Steels”, Materials
Science and Engineering A, Vol 328, No 1, 26–
32, 2002.
37. Berrahmoune, M.R., Berveiller, S., Inal, K.,
Moulin, A., Patoor, E., “Analysis of the
Martensitic Transformation at Various Scales in
TRIP Steel”, Materials Science and
Engineering A, Vol 378, No 1, 304–307, 2004.
38. Hutchinson, B., “Texture in Hot Rolled Austenite
and Resulting Transformation Products”,
Materials Science and Engineering A, Vol 257,
No 1, 9–17, 1998.
39. Zhao, L., Dijk, N.H., Brück, E., Sietsma, J.,
Zwaag, S., “Magnetic and X-ray Diffraction
Measurements for the Determination of Retained
Austenite in TRIP steels”, Materials Science
and Engineering A, Vol 313, No 1, 145–152,
2001.
40. Li, L., Wollants, P., He, Y.L., Coomman, B.C.,
Wei X.C., Xu, Z.Y., “Review and Prospect of
High Strength Low Alloy TRIP Steel”, Acta
Metallurgica Sinica (English Letters) Vo1 16,
No 6, 457-465, 2003.
41. Hoon, H., Kim, S.B., Song, J.H., and Lim, J.H.,
“Dynamic Tensile Characteristics of TRIP-type
and DP-type Steel Sheets for an Auto-Body”,
International Journal of Mechanical Sciences,
Vol 50, No 5, 918–931, 2008.
42. Dan, W.J., Li, S.H., Zhang, W.G., Lin, Z.Q.,
“The Effect of Strain-Induced Martensitic
Transformation on Mechanical Properties of
TRIP Steel”, Materials and Design, Vol 29, No
4, 604-612, 2008.
43. Yinghui, Z., Yonli, M., Yonglin, K., Hao, Y.,
Mechanical Properties and Microstructure of
TRIP Steels Produced Using TSCR Process”,
Journal of University of Science and
Technology, Beijing Vol 13, No 5, 416-421,
2006.
44. WU, D., Zhuang, L., Hui-sheng, L., “Effect of
Controlled Cooling After Hot Rolling on
Mechanical Properties of Hot Rolled TRIP
Steel”, Journal of Iron and Steel Research,
International, Vol 15, No 2, 65-70, 2008.
45. Koh-Ichi, S., Toshiki, M., Shun-Ichi H., Yoichi,
M., “Formability of Nb Bearing Ultra High-
Strength TRIP-aided Sheet Steels”, Journal of
Materials Processing Technology, Vol 177, No
1, 390–395, 2006.
46. Skoalova, L., Divišová, R., Jandová, D.,
“Thermo-Mechanical Processing of Low-Alloy
TRIP steel”, Journal of Materials Processing
Technology, Vol 175, No 1, 387–392, 2006.
47. Wen, S., Lin L., Cooman, B.C.D., Wollants, P.,
Yang, C., “Thermal Stability of Retained
Austenite in TRIP Steel After Different
Treatments”, Journal of Iron and Steel
Research, International, Vol 15, No 1, 61-64,
2008.
48. Zhuang, L., Di, W., Rong, H., “Austempering of
Hot Rolled Si-Mn TRIP Steels”, Journal of Iron
and Steel Research, International, Vol 13, No
5, 41-46, 2006.
49. Xiaodong, Z., Zhaohui, M., Wang L., “Current
Status of Advanced High Strength Steel for Automaking
and its Development in Baosteel”,
Baosteel Research Institute, Shanghai, 201900,
1-8, China.
50. Chatterjee, S., “Transformations in TRIP-assisted
Steels: Microstructure and Properties”, Darwin
College, University of Cambridge, November,
2006.
51. Hanzaki, AZ., Hodgson PD., Yue, S., “Hot
Deformation Characteristics of Si-Mn TRIP
Steels With and Without Nb Microalloy
Additions”, ISIJ International, Vol 35, No 4,
324-330, 1995.
52. La-Neuve, P. Jacques, PhD Thesis, Universite´
Catholique de Louvain, Belgium, 1998.
53. Basuki, A., and Aernoudt, E., “Effect of
Deformation in the Intercritical Area on the Grain
Refinement of Retained Austenite of 0.4C TRIP
Steel”, Scripta Materialia, Vol 40, No 9, 1003–
1008, 1999.
54. Cooman, B.C.D., “Structure–Properties
Relationship in TRIP Steels Containing Carbide-
Free Bainite”, Current Opinion in Solid State
F. Hayat TRIP Çeliklerinin Otomotiv Endüstrinde Kullanımının İncelenmesi
712 Gazi Üniv. Müh. Mim. Fak. Der. Cilt 25, No 4, 2010
and Materials Science, Vol 8, No 4, 285–303,
2004.
55. Oliver, S. Jones, T.B., Fourlaris, G., “Dual Phase
Versus TRIP Strip Steels: Microstructural
Changes As a Consequence of Quasi-Static and
Dynamic Tensile Testing”, Materials
Characterization, Vol 58, No 4, 390-400, 2007.
56. Hilditch, T.B., Speer, J.G., Matlock, D.K.,
“Effect of Susceptibility to Interfacial Fracture on
Fatigue Properties of Spot-Welded High Strength
Sheet Steel”, Materials and Design, Vol 28, No
10, 2566–2576, 2007.
57. Liu, Q., Tang, D., Jiang, H., Liu, R., Tang, X.,
“Research and Development of 780 MPa Cold
Rolling TRIP-aided Steel”, International
Journal of Minerals, Metallurgy and
Materials, Vol 16, No 4, 399-406, 2009.
58. “Material assessment for crash”, Corus
Research, MEP/02-2002,
(http://www.corusautomotive.com/file_source/St
aticFiles/Microsites/Automotive/Publications/Aut
o%20Apps%20PDFs/2008%20PDFs/Material%2
0assessment%20for%20crash_20071101.pdf)
59. Uenishi, A., Kuriyama, Y., Takahashi, M.,
“High-Strength Steel Sheets Offering High
Impact Energy-Absorbing Capacity”, Nippon
Steel Technical Report, (Japan), 81, 17, 2000.
60. Takahashi, M., Kawano, O., Hayashida, T.,
Okamoto, R., Taniguchi, H., “High Strength Hot-
Rolled Steel Sheets for Automobiles”, Nippon
Steel Technical Report, 88, 2-7, 2003.
61. Sakuma, Y., Kimura, N., Itami, A., “Next-
Generation High-Strength Sheet Steel Utilizing
Transformation-Induced Plasticity (TRIP)
Effect”, Nippon Steel Technical Report, no.64
March 1995.
62. Parish, C.M., “Fundamental Study of Phase
Transformations in Si-Al TRIP Steels”, Bs in
Material Science and Engineering A, NCS
University, 2000.
63. Andrew, K.W., “Empirical Formulae for the
Calculation of Some Transformation
Temperatures”, Journal of the Iron and Steel
Institute, Vol 203, 721-727, 1965.
64. Topbaş, M.A., “Isıl İşlemler”, Prestij Yayıncılık,
Yıldız Teknik Üniversitesi, İstanbul, 1993.
65. Wasilkowska, P., Tsipouridis, E.A., Werner, A.,
Pichler, S., Traint “Microstructure and Tensile
Behaviour of Cold-Rolled TRIP-aided Steels”,
Journal of Materials Processing Technology,
Vol 157–158, No 1, 633–636, 2004.
66. Wei, X., Renyu, F., Li L., “Tensile Deformation
Behavior of Cold-Rolled TRIP-aided Steels Over
Large Range of Strain Rates”, Materials Science
and Engineering A, Vol 465, No 1, 260–266,
2007.
67. Kim, S.J., Chang G.L., Lee, T.H., Oh, C.S.,
“Effect of Cu, Cr and Ni on Mechanical
Properties of 0.15 wt.% C TRIP-aided Cold
Rolled Steels”, Scripta Materialia, Vol 48, Vol
5, 539–544, 2003.
68. “Top Steel Producer Campanies”, World Steel
Assosiation,2009.
(http://www.worldsteel.org/?action=programs&id
=53)

Thank you for copying data from http://www.arastirmax.com