Buradasınız

ÇARPAN OSİLASYONLU JETLERDE OSİLASYON KARAKTERİSTİKLERİNİN VE ÇARPMA MESAFESİNİN AKIŞ VE ISI TRANSFERİNE ETKİLERİNİN SAYISAL OLARAK İNCELENMESİ

NUMERICAL ANALYSIS OF EFFECTS OF THE OSCILLATION CHARACTERISTICS AND THE NOZZLE TO PLATE DISTANCE ON THE FLOW AND HEAT TRANSFER IN OSCILLATING IMPINGING JETS

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, a sinusoidally oscillating jet injected through a rectangular slot between two infinite horizontal plates was considered. Bottom plate was kept at constant temperature and the top plate was insulated. The oscillating air jet, issued from a rectangular slot on the top plate was impinged on the bottom hot plate. A computer program was developed by using the control volume technique and SIMPLE algorithm. Using this computer program, flow and heat transfer characteristics of the jet flow were numerically analyzed. The effects of the H/W, oscillation amplitude and oscillation frequency on the flow and heat transfer were investigated. It was observed that the stagnation point Nusselt number decreases with the increasing H/W ratio, but variation in the Nusselt number for H/W greater than 2 is very small. It is also observed that the oscillation of jet has no effect on stagnation Nusselt number when H/W is approximately less than 1.5. However, at the cases when H/W is greater than 1.5 the oscillating increases the Nusselt number with respect to the Nusselt number of a steady jet.
Abstract (Original Language): 
Bu çalışmada, birbirine paralel olarak yerleştirilmiş, iki yatay sonsuz levha arasına püskürtülen bir jet ele alınmıştır. Üst levhada bulunan dikdörtgen bir lüleden osilasyonlu bir hava jeti, sıcak alt levhaya çarptırılmıştır. Jetin lüleden çıkış hızı, zamana bağlı olarak sinüs eğrisi şeklinde periyodik olarak değişmektedir. Kontrol hacmi metodu ve SIMPLE algoritması kullanılarak bir bilgisayar programı geliştirilmiştir. Levhalar arası mesafenin lüle genişliğine oranının (H/W), jet hızının salınım genliğinin ve frekansının, akış ve ısı transferine etkileri incelenmiştir. Yapılan simülasyonlar, levhalar arası mesafe arttıkça, durma noktası Nusselt sayısının azaldığını, ancak H/W oranının 2’den büyük değerlerinde Nusselt sayısındaki değişimin çok az olduğunu göstermiştir. Durma noktası Nusselt sayısının, H/W oranının küçük değerlerinde, kararlı jet Nusselt sayısına çok yakın olduğu; H/W oranının 1,5’den büyük olduğu durumlarda ise osilasyonlu jet Nusselt sayısının, kararlı jet Nusselt sayısından daha büyük olduğu görülmüştür.
895
904

REFERENCES

References: 

1. Incropera, F.P., DeWitt, D.P., Introduction to
Heat Transfer, 3rd ed., John Willey & Sons Inc.,
1996.
2. Gordon, R., Akfırat, J. C., “The role of turbulence
in determining the heat-transfer characteristics of
impinging jets”, Int. J. Heat Mass Transfer, 8,
1261-1272, 1965.
3. Miyazaki, H., Silberman, E., “Flow and heat
transfer on a flat plate normal to a twodimensional
laminar jet issuing from a nozzle of
finite height”, Int. J. Heat Mass Transfer, 15,
2097-2107, 1972.
4. Yan, X., Saniei, N., “Heat transfer from an
obliquely impinging circular air jet to a flat
plate”, Int. J. Heat and Fluid Flow, 18, 591-
599, 1997.
5. Morris, G. K., Garimella, S. V. and Fitzgerald, J.
A., “Flow-field prediction in submerged and
confined jet impingement using the Reynolds
stress model”, Journal of Electronic Packaging,
121, 255-262, 1999.
6. Chiriac, V. A., Ortega A., “A numerical study of
the unsteady flow and heat transfer in a
transitional confined slot jet impinging on an
isothermal surface”, International Journal of
Heat and Mass Transfer, 45, 6, 1237-1248,
2002.
7. Chung, Y. M, Luo, K. H. and Sandham N. D.,
“Numerical study of momentum and heat transfer
in unsteady impinging jets”, International
Journal of Heat and Fluid Flow, 23, 5, 592-
600, 2002.
8. Camci, C., Herr, F., “Forced convection heat
transfer enhancement using a self-oscillating
impinging planar jet”, ASME Journal of Heat
Transfer, 124, 770-782, 2002.
9. Sahoo, D., Sharif, M. A. R., “Numerical
modelling of slot-jet impingement cooling of a
constant heat flux surface confined by a parallel
wall”, International Journal of Thermal
Sciences, 43, 9, 877-887, 2004.
10. Zhou, D. W., Lee, S. J., “Forced convective heat
transfer with impinging rectangular jets”, Int. J.
of Heat and Mass Transfer, 50, 1916–1926,
2007.
11. Demircan, T., Türkoğlu, H., “Numerical
investigation of an oscillating two dimensional
T. Demircan, H.Turkoglu Çarpan Osilasyonlu Jetlerde Osilasyon Karakteristiklerinin ve Çarpma Mesafesinin…
904 Gazi Üniv. Müh. Mim. Fak. Der. Cilt 25, No 4, 2010
rectangular impinging air jet”, Journal of
Thermal Science and Technology, 27, 1, 39-50,
2007.
12. Lee, H. G., Yoon, H. S., Ha, M. Y., “A numerical
investigation on the fluid flow and heat transfer
in the confined impinging slot jet in the low
Reynolds number region for different channel
heights”, Int. J. of Heat and Mass Transfer, 51,
4055–4068, 2008.
13. Sharif, M. A. R., Banerjee, A., “Numerical
analysis of heat transfer due to confined slot-jet
impingement on a moving plate”, Applied
Thermal Engineering, 29, 532–540, 2008.
14. Patankar, S. V., Numerical Heat Transfer and
Fluid Flow, McGraw-Hill Book Company, New
York, 1980.
15. Chiriac, V. A., A numerical investigation of the
unsteady flow and heat transfer in a forced
and unforced confined laminar impinging jet,
PhD Thesis, The University of Arizona, 1999.

Thank you for copying data from http://www.arastirmax.com