Buradasınız

İÇME SULARINDAN ELEKTROKOAGÜLASYON VE KİMYASAL KOAGÜLASYON İLE BULANIKLIĞIN GİDERİMİ

REMOVAL OF TURBIDITY FROM DRINKING WATER BY ELECTROCOAGULATION AND CHEMICAL COAGULATION

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, the removal of turbidity from drinking water by electrocoagulation (EC) and chemical coagulation (CC) processes was investigated. Turbidity removal efficiencies to measure of the treatment removal were taken into consideration. Two electrode materials aluminum and iron were used in EC process were connected as monopolar parallel; the effects of the type of electrode, initial pH, current density and electrolysis time on the removal of turbidity were investigated. The optimum operational conditions for each of electrodes materials were found to be pH 7.9, current density 10 A/m2 and electrolysis time 3 min. In these conditions; turbidity removal efficiencies and operational costs were 99 %, 96 % and 0.0234 $/m3, 0.0247 $/m3 respectively. Type of coagulant, initial pH and coagulant dosage were investigated in CC process. Also, in both of EC and CC processes operational cots were calculated and compared. Three different coagulants (Al2(SO4)3.18H2O, FeSO4.7H2O, FeCl3.6H2O) which were respectively used in coagulation process; optimum operational conditions were found to be pH 7.9 and 20 mgMe+/L. For each of coagulants turbidity removal efficiencies and operational costs were 94.5 %, 93.9 %, 95.3 % and 0.0987 $/m3, 0.0397 $/m3, 0.0328 $/m3, respectively. Also, in the optimum conditions of processes; filtration was applied to drinking water samples and filtrations of process exits were investigated. As a result, EC process is more effective in turbidity removal efficiency and operational cost than CC process.
Abstract (Original Language): 
Bu çalışmada, elektrokoagülasyon (EC) ve kimyasal koagülasyon (CC) prosesi ile içme suyundan bulanıklık giderimi araştırılmıştır. Arıtma verimliliğinin ölçülmesinde bulanıklık giderme verimleri dikkate alınmıştır. Demir ve alüminyum elektrotların kullanıldığı EC prosesinde elektrotlar monopolar paralel bağlanarak, bulanıklık giderimi üzerine; elektrot türü, başlangıç pH’ı, akım yoğunluğu ve elektroliz süresinin etkisi araştırılmıştır. Her iki elektrot materyali için optimum işletme koşulları başlangıç pH 7,9, akım yoğunluğu 10 A/m2 ve elektroliz süresi 3 dakika olarak bulunmuştur. Bu koşullarda, bulanıklık giderme verimleri ve işletme maliyetleri alüminyum ve demir elektrotları için sırasıyla % 99, % 96, 0,0234 $/m3 ve 0,0247 $/m3’tür. CC prosesinde ise koagülan madde türü, başlangıç pH ve koagülan dozajı incelenmiştir. Ayrıca proseslerin doğrudan maliyetleri hesaplanarak karşılaştırılmıştır. Üç farklı türde koagülan maddenin (Al2(SO4)3.18H2O, FeSO4.7H2O, FeCl3.6H2O) kullanıldığı koagülasyon prosesinde optimum koşullar tüm koagülan maddeler için başlangıç pH 7,9 ve koagülan dozu 20 mgMe+/L olarak bulunmuştur. Bu koşullardaki bulanıklık giderme verimleri ve işletme maliyetleri sırasıyla; %94,5, %93,9, %95,3 ve 0,0987 $/m3, 0,0397 $/m3, 0,0328 $/m3 olarak hesaplanmıştır. Ayrıca EC ve CC prosessinden sonra içme suyu örneklerine filtrasyon işlemi uygulanarak proseslerin optimum koşullardaki Filtrelenmeleri (F) incelenmiştir. Sonuç olarak, EC prosesinin, CC prosesine göre daha yüksek bulanıklık giderme verimine sahip olduğu ve daha ekonomik bir proses olduğu belirlenmiştir.
81
89

REFERENCES

References: 

1. Bache, D. and Gregory, R., Flocs in Water
Treatment. IWA Publishing, London, 2007.
2. Samsunlu, A., Çevre Mühendisliği Kimyası,
SAM-ÇEVRE Teknolojileri Merkezi Yayınları,
4. Baskı, İstanbul, 1999.
3. Şengül, F. ve Müezzinoğlu, A., Çevre Kimyası,
D.E.Ü. Müh. Fak. Basım Ünitesi, 4. Baskı, İzmir,
2001.
4. Zhao, H., Hu, C., Liu, H. and Qu, J., “Role of
aluminum speciation in the removal of
disinfection by production precursors by a
coagulation process”, Environmental Science
Technolgy, Vol 42, 5752-5758, 2008.
5. Sharp, E.L., Parsons, S.A. and Jerferson, B.,
“Seasonal variations in natural organic matter and
its impact on coagulation in water treatment”,
Science of the Total Environmen, Vol 363, No
15, 183-194, 2006.
6. Bukhari, A.A., “Investigation of the
electrocoagulation treatment process for the
removal of total suspended solids and turbidity
from municipal wastewater”, Bioresource
Technology, Vol 99, 914-921, 2008.
7. Chen, X., Chen, G. and Yue P.L., “Separation of
pollutans from restaurant wastewater by
electrocoagulation”, Separation and
Purification Technology, Vol 19, 65-76, 2000.
8. Solak, M., Kılıç, M. and Yazıcı, H., “Removal of
suspended solids and turbidity from marble
processing wastewaters by electrocoagulation:
comparison of electrode materials and electrode
connection systems”, Journal of Hazardous
Materials, Vol 172, 345-352, 2009.
9. Shafari, A., Rezayee, M., Arami, M., and
Nikazar, M., “Removal of Mn+2 ions from
synthetic wastewater by electrocoagulation
process”, Desalination, Vol 260, 23-28. 2010.
10. Makalootian, M., Mansoorian, H.J., and
Moosazadeh, M., “Performance evaluation of
electrocoagulation process using iron-for
electrodes for removing hardess from drinking
water”, Desalination, Vol 255, 67-71, 2010.
Tablo 4. EC ve CC deneylerinde hesaplanan F sayıları ve metal konsantrasyonları. (Calculated F constants and metal
concentrations in EC and CC experiments)
Elektrokoagülasyon (EC) Kimyasal Koagülasyon (CC)
Materyal Al Elektrot Fe Elektrot Al2(SO4)3.18H2O FeSO4.7H2O FeCl3.6H2O
Optimum Deney Şartları
AY: 10 A/m2
pH: 7,9
t:3 dakika
AY: 10 A/m2
pH: 7,89
t: 3 dakika
pH: 7,9
Dozaj: 20 mgMe+/L
pH: 7,9
Dozaj: 20 mgMe+/L
pH: 7,9
Dozaj: 20 mgMe+/L
Filtre Edilebilirlik Sayısı (F)
(*10-5) 204 527 317 528 534
Alüminyum (mg/L) 0,14 --- 0,2 --- ---
Demir (mg/L) --- 0,13 --- 0,19 0,13
Yönetmelikler
TS 266 (2005) 0,2 0,2 0,2 0,2 0,2
WHO (1999) 0,2 0,2 0,2 0,2 0,2
Sağlık Bak. İnsani Tük. Amaçlı
Sular Yön. (2005) 0,2 0,2 0,2 0,2 0,2
• Kimyasal koagülasyonda 3 dakika 200 rpm hızlı, 15 dakika 45 rpm yavaş karıtırma ve 60 dakika çökelme işlemine tabi
tutulmuştur.
• Elektrokoagülasyonda 3 dakika 200 rpm hızlı, 15 dakika 45 rpm yavaş karıtırma ve 60 dakika çökelme işlemine tabi tutulmuştur
İçme Sularından Elektrokoagülasyon ve Kimyasal Koagülasyon ile Bulanıklığın Giderimi F. Özyonar ve B. Karagözlü
Gazi Üniv. Müh. Mim. Fak. Der. Cilt 27, No 1, 2012 89
11 Ghosh, D., Medhi., C.R., and Purkait, M.K.,
“Treatment of fluoride containing drinking water
by electrocoagulation using monopolar and
bipolar electrode connections”, Chemosphere,
Vol 73, 1393-1400, 2008.
12. Zhao, H-Z., Yang, W., Zhu, J., and Ni, J-R.,
“Defluoridation of drinking water by combined
electrocoagulation: Effects of the molar ration of
alkalinity and fluoride to Al(III)”, Chemosphere,
Vol 74, 1391-1395, 2009.
13. Lakshmanan, D., Clifford, D.A., and Samanta,
G., “Comparative study of arsenic removal by
iron using electrocoagulation and chemical
coagulation”, Water Research. 1-12, 2010.
14. Kumar, N.S. and Goel, S., “Factors influencing
arsenic and nitrate removal from drinking water
in a continuous flow electrocoagulation (EC)
process”, Journal of Hazardous Materials, Vol
173, 528-533, 2010.
15. Holt, P.K., Barton, G.W., Wark, M. and Mitchell,
C.A., “A quantitative comparison between
chemical dosing and electrocoagulation”, Colloid
Surface A, Vol 211, 233-248, 2002.
16. Canizares, P., Carmona, M., Lobato, J., Martinez,
F. and Rodrigo, M.A., “Electrodissolution of
aluminum electrodes in electrocoagulation
processes”, Indian journal of Engineering
Chemical Research, Vol 44, 4178-4185, 2005.
17. Mollah, M.Y.A., Schennach, R., Parga, J.R. and
Cocke, D.L., “Electrocoagulation (EC)-science
and applications”, Journal of Hazardous
Materials, Vol 84, 29-41, 2001.
18. Pouet, M.F. and Grasmick, A., “Urban
wastewater treatment by electrocoagulation and
flotation”, Water Science Technolgy, Vol 31,
275-283, 1995.
19. Arslan, T., Kabdaşlı, I., Arslan-Alaton, İ., Ölmez,
T., ve Tünay, O., “Kompleks olarak bağlı metal
içeren atıksuların elektrokoagülasyon prosesi ile
arıtımı”, İ.T.Ü. Su Kirlenmesi Kontrolü Dergisi.
Cilt 18, Sayı 11, 42-52, 2008.
20. Do, J.S. and Chen, M.L., “Decolourization of
dye-containing solutions by electrocoagulation”,
Journal of Applied Electrochemical, Vol 24,
785-790, 1994.
21. Reynolds, T.D., Unit operations and processes
in environmental engineering, PWS-KENT,
California, A.B.D., 1982.
22. Kobya, M., Demirbas, E., and Akyol, A.,
“Electrochemical treatment and operating cost
analysis of textile wastewater using sacrificial
iron electrodes”, Water Science Technolgy, Vol
60, 2261-2270, 2009.
23. Kobya, M., Demirbas, E., Dedeli, A. and Sensoy,
M.T., “Treatment of rinse water from
zincphosphate coating by batch and continuous
electrocoagulation processes”, Journal of
Hazardous Materials, Vol 17, 3326-334, 2010.
24. APHA, Standart Methods for examination of
water and wastewater. 17th Ed.; American
Public Health Association, American Water
Works Associations, Water Environment
Fedaration, Washington DC, U.S.A., 1992.
25. Gurses, A., Yalcin, M. and Dogar, C.,
“Electrocoagulation of some reactive dyes: a
statistical investigation of some electrochemical
variables”, Waste Management, Vol 22, 491–
499, 2002.
26. Bayramoglu, M., Can, O.T., Kobya, M., and
Sozbir, M., “Operating cost analysis of
electrocoagulation of textile dye wastewater”,
Separation and Purification Technology, Vol
37, 117-125, 2004.
27. Daneshvar, N., Oladegaragoze, A., and
Djafarzadeh, N., “Decolorization of basic dye
solutions by electrocoagulation: an investigation
of the effect of operational parameters”, Journal
of Hazardous Materials, Vol 129, 116-122,
2006.
28. Chen, G., “Electrochemical technologies in
wastewater treatment”, Separation and
Purification Technology, Vol 38, 11-41, 2004.
29. Murugananthan, M., Raju, G.B. and Prabhakar,
S., “Separation of pollutants from tannery
effluents by electro flotation”, Separation and
Purification Technology, Vol 40, 69-75, 2004.
30. Kobya, M., Hiz, H., Senturk, E., Aydiner, C. And
Demirbas, E., “Treatment of Potato Chips
Manufacturing Wastewater By
Electrocoagulation”, Desalination, Vol 190, 201-
211, 2006.
31. Daneshvar, N., Khatae, A.R., Amani-Ghadim,
A.R. and Rasoulifard, M.H., “Decolorization of
C.I. Acid Yellow 23 Solution by
Electrocoagulation Process; Investigation of
Operational Parameters and Evaluation of
Specific Electrical Energy Consumption
(SEEC)”, Journal of Hazardous Materials, Vol
148, 566-572, 2007.

Thank you for copying data from http://www.arastirmax.com