Buradasınız

ENANTİYOMERİK OLARAK SAF SEKONDER ALKOLLERİN ÜRETİMİNDE BİTKİ BİYOKATALİZÖRLERİ KULLANIMI

USE OF THE PLANT AS BIOCATALYSTS FOR PRODUCING ENANTİOMERİCALLY PURE SECONDER ALCOHOL

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, enantiomerically pure (S)-1-Phenylethanol was produced with bioreduction of acetophenone that the precursor of many pharmacological product. Derivatives of (S)-1-Phenylethanol (secondary alcohol) is used as the active ingredient of drug of anti alzheimer. Production of (S)-1-Phenylethanol was conducted with the asymmetric reduction reaction of acetophenone that biocatalyst for there action is enzyme of alcohol dehydrogenase (ADH). In this study, a variety of fruits and vegetables were used as source of enzyme (ADH) for reduction of the carbonyl group and ADH enzyme activities were determined of different plants (carrots, potatoes, grapes, radishes) for selection of suitable plant which it has the highest intra cellular enzyme activity. At the end of this election carrot has been considered as a biocatalyst which has highest ADH activity. The effects of size of biyocatalyst, source of enzyme, substrate concentration, temperature, reaction time, pH of there action and the amount of biocatalyst have been investigated on the production of (S)-1-Phenylethanol. It was found that ADH enzyme in fresh carrots catalysed the bioselective asymmetric reduction reactions at high conversion and high enantioselectively (>%99 ee and 92% c), under the conditions of 2mM substrate concentration, 200 g/L biocatalyst concentration, 1,52 mm biyocatalyst size, reaction temperature 33 °C, pH=7 and 150 rpm agitation speed.
Abstract (Original Language): 
Bu çalışmada asetofenonun biyoindirgenmesiyle, birçok farmokolojik ürünün öncü maddesi olan enantiyomerik saflıkta (S)-1-fenil etanol üretilmiştir. (S)-1-fenil etanol türevleri antialzaymır ilaç etken maddesi olarak da kullanım alanına sahiptir. (S)-1-fenil etanolün üretimi, asetofenonun alkoldehidrojenaz (ADH) enzimi biyokatalizli asimetrik indirgenme tepkimesiyle gerçekleştirilmiştir. Çalışmanın ilk aşamasında, karbonil grubunu indirgeyebilmesi için ADH enzim kaynağı olarak çeşitli meyve ve sebzeler kullanılmıştır. En yüksek aktiviteye sahip olan uygun bitkinin seçimi için, farklı bitkilerin (havuç, patates, üzüm, turp) ADH enzim aktiviteleri tayin edilmiştir. Biyokatalizör olarak, en yüksek ADH aktivitesine sahip havuç seçilmiştir. Çalışmanın ikinci aşamasında, enantiyomerik saflıkta (S)-1-fenil etanol üretimine biyokatalizör boyutu, enzim kaynağı, substrat derişimive sıcaklık, tepkime süresi, tepkime pH’ıve hücre derişiminin etkileri araştırılmıştır. Enantiyoseçimli asimetrik biyoindirgenme tepkimesinde biyokatalizör olarak kullanılan taze havuç içindeki ADH enzimi tepkimeyi 2mM substrat derişimi, 200 g/L biyokatalizör derişimi, 1,52 mm biyokatalizör boyutu, 33 oC tepkime sıcaklığı, pH=7 ve 150 rpm karıştırma hızı koşullarında, yüksek enantiyoseçimlilikte ve yüksek dönüşümde katalizlemiştir (>%99 ee ve %92 c).
49
56

REFERENCES

References: 

1. Wanda, K.M. ve Agnieszka, M., ”Enantio
selective reduction of bromo- andmethoxy
acetophenone derivatives using carrot and
celeriac enzymatic system”, Tetra hedron
:Asymmetry, Cilt 15, No 13, 1965–1967, 2004.
2. Williams, R.C., Riley, C.M., Sigvardson, K.W.,
Fortunak, J., Nicolas, E.C., Unger, S.E., Krahn,
D.F. ve Bremmer, S.L., “Pharma ceutical
development and spesification of stereoisomers”,
0
20
40
60
80
100
24h 48h 72h
%ee-%c
Süre, h
%ee
%c
H. Ç. Kazıcı, Ü. Mehmetoğlu Enantiyomerik Olarak Saf Sekonder Alkollerin Üretiminde Bitki …
56 Gazi Üniv. Müh. Mim. Fak. Der. Cilt 30, No 1, 2015
Pharmaceutical and Bio medical Analysis, Cilt
17, No 6-7, 917-924, 1998.
3. Kordikowski, A., York, P. ve Latham, D.,
“Resolution of ephedrinein supercritical CO2: a
novel techniqe for seperation of chiral drugs”,
Journal of Pharmaceutical Sciences, Cilt 88,
No 8, 786-791, 1999.
4. Kurbanoglu, E. B. ,Zilbeyaz, K., Ozdal, M. ve
Taşkin, M., “Asymmetric reduction of sub
stituted acetophenones using once immobilized
Rhodotorula glutinis cells”, Bioresource
Technology, Cilt 101, No 11, 3825–3829, 2010.
5. Leandro, H. A.,Roberto, S.U., Alvaro, T.O.,
Andre, L.M.P. ve Joao, V.C., “Edible catalysts
for clean chemical: Bioreduction of aromatic
ketones and biooxidation of secondary alcohols
using plants”, Journal of Molecular Catalysis
B: Enzymatic, Cilt 38, No 2, 84-90, 2005.
6. Giri, A.,Dhinga, V., Giri, C.C., Singh, A., Ward,
O.P. ve Narasu, M.L., “Biotrans formations using
plant cells, organ cultures and enzyme systems:
current trends and future prospects”,
BiotechnologyAdv., Cilt 19, No 3, 175, 2001.
7. Rao, B.A, Rao, V.K., Rahaman, H.U.R., Prasad,
A.R., Krishna, A.D., Sabitha, G., Reddy,
G.S.K.K. ve Yadav, J.S., “Daucus carota and
baker’s yeast mediated bio-reduction of prochiral
ketones”, Tetrahedron: Asymmetry,Cilt 18,No
6, 717–723, 2007.
8. Aydoğan, Ö., Ketonların Biyokatalitik
İndirgenmesi İle Enantiyomerik Saflıkta Kiral
Madde Üretimi, Doktora Tezi, Ankara
Üniversitesi, Fen Bilimleri Enstitüsü, 2012.
9. Wanda, K. M. ve Agnieszka, M.,
“Enantioselective reduction of bromo and
methoxy acetophenone derivative susing carrot
and celeriac enzymatic system”, Tetrahedron
Asymmetry, Cilt 15, No 13, 1965–1967, 2004.
10. Yadav, J.S. ,Basi, V.S.R., Cihittamuru, S. ve
Adari, B.R., “Enantioselective reduction of
prochiral ketones employing sprouted
pisumsativa as biocatalyst”, Division of Organic
Chemistry, Cilt 11, 1881-1885, 2009.
11. Ramesh, N.P., “Synthesis of chiral pharma
ceutical intermediates by bio catalysis”, C.
Chem. Rew, Cilt 252, No 5-7, 659-701, 2008.
12. Demirtaş, H., Aminoasit ve Aminlerin
Enantiyomerik Tanınması İçin Kiral
Reseptörlerin Sentezi ve Uygulamaları, Yüksek
Lisans Tezi, Selçuk Üniversitesi, Fen Bilimleri
Enstitüsü, 2009.
13. Ghanem, A. ve Aboul-Enein, H.Y., “Lipasemediated
chiral resolution of racemates in or
ganic solvents”, Tetrahedron: Asymmetry, Cilt
15, No 21, 3331-3351, 2004.
14. Durak, Z., E, ve Gürü, M., “Alkalen fosfataz
(Alp) enziminin özütlenmesi, inhibisyonu ve
kinetik modellenmesi”, Journal of The Faculty
of Engineering and Architecture of Gazi
University, Cilt 28, No 1, 209-215, 2013.
15. Yu, W., Lixiang, L., Cuiqing, M., Chao, G., Fei,
T. ve Ping, X., “Engineering of cofactor
regeneration enhances (2S,3S)-2,3-butanediol
production from diacetyl”, Scientific Reports,
Cilt 3, No 2643, 2013.
16. Valivety, R.H., Halling, P.J., Peilow, A.D. ve
Macrae, A.R., “Lipases from different sources
vary widely in dependence of catalytic activity on
water activity”, Biochim. Biophy. Acta, No
1122, 143-146, 1992.
17. Shuler, M.L. and Kargı, F., 1992, Bioprocess
Engineering, Prentice-Hall, Inc., USA.
18. Hummel, W., Abokitse, K., Drauz, K., Rollmann,
C. ve Gröger, H., “Towards a Large-Scale
Asymmetric Reduction Process with Isolated
Enzymes: Expression of an (S)-Alcohol
Dehydrogenase in E. coli and Studies on the
Synthetic Potential of this Biocatalyst”, Adv.
Synth. Catal., Cilt 345, No 1-2, 153-159, 2003.

Thank you for copying data from http://www.arastirmax.com