Buradasınız

Fenolik Bileşiklerin Tayini için Polifenol Oksidaz Temelli Amperometrik Enzim Elektrot Hazırlanması

Preparation of Amperometric Enzyme Electrode Based on Polyphenol Oxidase for Determination of Phenolic Compounds

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, amperometric enzyme electrodes based on polymer film for determination phenolic compounds were prepared. For this purpose platin electrodes were modified by electropolymerization using asetonitril-water mixture containing o-phenylenediamine (o-PD) or o-phenylenediamine and 3-methylthiophene (3MT). Polyphenol oxidase was immobilized onto Pt/PoPD and Pt/PoPD-3MT electrodes and amperomeric responses to pyrocatechol were investigated. Pt/PoPD-3MT/POx electrode that obtained higher sensitivity was used for determination of working conditions and performance factors. Optimum type of buffer, buffer concentration, pH, temperature and working potential were determinated as phosphate, 0.10 M, 7.0, 25 C and -0.20 V (vs. Ag/AgCl) respectively. The linear working range of 1.96×10 -6 -3.5×10 -5 M. Response time, reusability, life time, and amperometric responses to other phenolic compounds were also investigated.
Abstract (Original Language): 
Bu çalışmada, fenolik bileşiklerin tayini için polimer film temelli amperometrik enzim elektrotlar hazırlandı. Bu amaçla, o-fenilendiamin (o-PD) veya o-PD ve 3-metiltiyofen (3-MT) içeren asetonitril-su karışımı kullanılarak platin elektrotlar elektropolimerizasyon yoluyla modifiye edildi. Hazırlanan Pt/PoPD ve Pt/PoPD-3MT elektrotlara polifenol oksidaz (POx) enzimi immobilize edildi ve elektrotların pirokateşole duyarlıkları belirlendi. Daha yüksek duyarlığın elde edildiği Pt/PoPD-3MT/POx elektrot ile çalışma koşulları ve performans faktörleri çalışıldı. Pt/PoPD-3MT/POx elektrot için optimum tampon cinsi, tampon derişimi, pH’sı, sıcaklık ve çalışma potansiyeli sırasıyla fosfat; 0,10 M; 7,0; 25C ve Ag/AgCl’e karşı 0,20 V olarak belirlendi. Enzim elektrodun doğrusal çalışma aralığı 1,96×10 –6 - 3,50×10 -5 M olarak belirlendi. Enzim elektrodun cevap süresi, tekrar kullanılabilirliği, ömrü ve diğer bazı fenolik bileşiklere amperometrik cevapları da araştırıldı.
955-978

REFERENCES

References: 

Ameer, Q. and Adeloju, S.B. (2009). Development of a potentiometric catechol
biosensor by entrapment of tyrosinase within polyprrole film. Sensors and
Actuators B, 140, 4-11.
Bagheri, H., Mohammadi, A. and Salemi, A. (2004). On-line trace enrichment of
phenolic compounds from water using a pyrrole-based polymer as the solid-phase extraction sorbent coupled with high-performance liquid
chromatography, Analytica Chimica Acta, 513, 445–449.
Cosnier, S., Fologea, D., Szunerits, S. and Marks R.S. (2000). Poly(dicarbazole-N-hyroxysuccinimide) film: a new polymer for the reagentless grafting of
enzymes and redox mediators, Electrochemistry Communications, 2, 827-831.
Curulli, A. Kelly, S., O’Sullivan, C., Guilbault, G.G. and Palleschi, G. (1998). A new
interference-free lysine using a non-conducting polymer film. Biosensors and
Bioelectronics, 13, 1245-1250.
Dai, Y.Q., Zhou, D.M. and Shiu, K.K. (2006). Permeability and permselectivity of
polyphenilenedimine films synthesized at palladium disk electrode.
Electrochimica Acta, 52, 297-303.
Dempsey, E., Diamond, D. and Collier, A. (2004). Development of a biosensor for
endocrine disrupting compounds based on tyrosinase entrapped within a
poly(thionine ) film. Biosensors and Bioelectronics, 20, 367-377.
Fan, Q., Shan, D., Xue, H., He, Y. and Cosnier, S. (2007). Amperometric phenol
biosensor based on laponite clay-chitosan nanocomposite matrix. Biosensors
and Bioelectronics, 22, 816-821.
Garjonyte, R. and Malinauskas, A. (1999). Amperometric glucose biosensor based on
glucose oxidase immobilized in poly(o-phenlylenediamine) layer. Sensors and
Actuators B, 56, 85-92.
Gupta, G., Rajendran, V. and Atanassov, P. (2003). Laccase biosensor on monolayer-modified gold electrode. Electroanalysis, 15 (20), 1577-1583.
Imabayashi, S., Kong, Y. and Watanabe, M. (2001). Amper ometric biosensor for
polyphenol based on horseradish peroxidase immobilized on gold electrodes.
Electroanalysis, 13(5), 408-412.
Kochana, J., Nowak, P., Jarosz-Wilkolazka, A.J., Bioeron, M. (2008).
Tyrosinase/laccase bienzyme biosensor for amperometric determination of
phenolic compounds. Microchemical Journal, 89, 171-174.
GÜ, Gazi Eğitim Fakültesi Dergisi, Cilt 30, Sayı 3 (2010) 955-978 976
Li, Y.F., Liu, Z.M., Liu, Y.L., Yang, Y.H. Shen, G.L., Yu, R.Q. (2006). A mediator-free
phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles.
Analytical Biochemistry, 349, 33-40.
Liu, S., Yu, J. and Ju, H. (2003). Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode. Journal of Electroanalytical
Chemistry, 540, 61-67.
Lupetti, K. O., Rocha F. R.P. and Fatibello-Filho, O. (2004). An improved flow system
for phenols determination exploiting multicommutation and long pathlength
spectrophotometry. Talanta, 62, 463–467.
Mailley, P., Cummings E.A., Mailley, S. Cosnier, S. Eggins, B.R. and McAdams E.
(2004). Amperometric detection of phenolic compounds by polypyrrole-based
composite carbon paste electrodes. Bioelectrochemistry, 63, 291-296.
Malitesta, C., Palmisano, F., Torsi, L. and Zambonin, P.G. (1990). Glucose fast-response amperometric sensor based on glucose oxidase immobilized
in an electropolimerized poly(o-phenylenedimine) film. Analytical
Chemistry, 62, 2735-2740.
Myler, S. Eaton, S. Higson, S.P.J. (1997). Poly(o-phenylenedimine) ultra-thin polymer-film composite membranes for enzyme electrodes. Analytica Chimica Acta.
357, 55-61.
Pedano, M.L. and Rivas, G.A. (2000). Amperometric biosensor for the quantification of
gentisic acid using polyphenol oxidase modified carbon paste electrode.
Talanta, 53, 489-495.
Quan, D. and Shin, W. (2004). Amperometric detection of catechol and catecholamines
by immobilized laccase from deniLite. Electroanalysis, 16 (19), 1576-1582.
Rajesh, Takashima, W. and Kaneto, K. (2004). Amperometric phenol biosensor based
on covalent immobilization of tyrosinase onto an electrochemically prepared
novel copolymer poly(N-3-aminoproply pyrrole-co-pyrrole) film. Sensors and
Actuators B, 102, 271-277.
Rajesh and Kaneto, K. (2005). A new tyrosinase biosensor based on covalent
immobilization of enyzme on N-(3-aminoproply) pyrrole polymer film.
Current Applied Physics, 5, 178–183.
Rajesh, Pandey, S.S., Takashima, W. and Kaneto, K. (2005). Simultaneous co-immobilization of enyzme and a redox mediator in polypyrrole film for
GÜ, Gazi Eğitim Fakültesi Dergisi, Cilt 30, Sayı 3 (2010) 955-978 977
fabrication of an amperometric phenol biosensor. Current Applied Physics, 5,
184-188.
Rothwell, S.A., Killoroan, S.J., Neville, E.M., Crotty, A.M. and O’Neill, R.D. (2008).
Poly(o-phenylenedamine) electrosynthesized in absence of added background
electrolyte provides an new permselectivity benchmark for biosensor.
Electrochemistry Communications, 10, 1078-1081.
Serra, B., Benito, B., Agüi L., Reviejo, A.J. and Pingarron, J.M. (2001). Graphide-Teflon-peroxidase composite electrochemical biosensors. A tool for wide
detection of phenolic compounds. Electroanalysis, 13 (8/9), 693-700.
Shan, D. Mousty, C., Cosnier, S. and Mu, S. (2002). A composite poly azure B-clay-enzyme sensors for the mediated electrochemical determination of phenols.
Journal of Electroanalytical Chemistry, 537, 103-109.
Shan, D., Zhu, M., Han, E., Xue, H. and Cosnier, S. (2007). Calcium carbonate
nanoparticles: A host for the construction of highly sensivite amperometric
phenol biosensor. Biosensors and Bioelectronics, 23, 648-654.
Shan, D., Zhang, J., Xue, H.G., Zhang, Y.C., Cosnier, S. and Ding, S.N. (2009).
Polycyrstalline bismuth oxide films for development of amperometric
biosensensor. Biosensors and Bioelectronics, 24, 2671-3676.
Tatsuma, T. and Sato, T. (2004). Self-wiring from tyrosinase to an electrode with redox
polymer. Journal of Electroanalytical Chemistry, 572, 15-19.
Tembe, S., Karve, M., Inamdar, S., Haram, S., Melo, J. and D’Souza, S. (2006).
Development of electrochemical biosensor based on tyrosinase immobilized in
composite biopolymeric film. Analytical Biochemistry, 349, 72-77.
Timur, S., Pazarlıoğlu, N., Pilloton, R. and Telefoncu, A. (2004). Thick film sensors
based on laccases from different sources immobilized in polyaniline matrix.
Sensors and Actuators B, 97, 132-136.
Tsai, Y.C. and Chiu, C.C. (2007). Amperometric biosensors based on multiwalled
carbon nanotube-Nafion-tyrosinase nanobiocomposites for the determination
of phenolic compounds. Sensors and Actuators B, 125, 10-16.
Vérdine, C., Fabiano, S. and Tran-Minh, C. (2003). Amperometric tyrosinase based
biosensor using an electrogenerated polythiophene film as an entrapment
support. Talanta, 59, 535-544.
Vianello, F., Cambria, A, Ragusa, S., Cambria, M.T. Zennaro, L. and Rigo, A. (2004).
A high sensitivity ampemetric biosensor using a monomolecular layer of
GÜ, Gazi Eğitim Fakültesi Dergisi, Cilt 30, Sayı 3 (2010) 955-978 978
laccase as biorecognition element. Biosensors and Bioelectronics, 20 (2), 315-321.
Vidal, J.C., Garcia, E. and Castillo, J.R. (1999a). In situ preparation of a cholesterol
biosensor: entrapment of cholesterol oxidase in an overoxidized polypyrrole
film electrodeposited in a flow system Determination of total cholesterol in
serum. Analytical Chimica Acta, 385, 213-222.
Vidal, J.C., Garcia, E. and Castillo, J.R. (1999b). In situ preparation of overoxidized
PPy/oPPD bilayer biosensor for the determination of glucose and cholesterol
in serum. Sensors and Actuators B, 57, 219-226.
Vidal, J.C., Garcia-Ruiz, E. and Castillo, J.R. (2003). Recent Advances in
Electropolymerized Conducting Polymers in Amperometric Biosensors,
Microchimica. Acta 143, 93–111.
Vidal, J.C., Espuelas, J., Garcia-Ruiz, E. and Castillo, J.R. (2004). Amperometric
cholesterol biosensors based on the electropolimerization of pyrrole and the
electrocatalytic effect of Prussian-Blue layers helped with self-assebled
monolayers. Talanta, 64, 655-664.
Wang, B., Zhang, J. and Dong, S. (2000). Silica sol-gel composite film as an
encapsulation matrix for the construction of an amperometric tyrosinase-based
biosensor. Biosensors and Bioelectronics, 15, 397-402.
Wang, G., Xu, J.J, Ye, L.H., Zhu, J.J. and Chen, H.Y. (2002). Highyl sensitive sensors
based on the immobilization of tyrosinase in chitosan, Bioelectrochemistry, 57,
33-38.
Wang H.S., Li, T.H., Jia, W.L and Xu, H.Y. (2006) Highly selective and sensitive
determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode. Biosensors and Bioelectronics, 22, 664–
669
Wang, P. Liu, M. and Kan, J. (2009). Amperometric phenol biosensor based on
polyaniline. Sensors and Actuators B, 140, 577-584.
Yang, S., Li, Y., Jiang, X., Chen, Z. and Lin, X. (2006). Horseradish peroxidise
biosensor based on layer-by-layer technique for the determination of phenolic
compounds. Sensors and Actuators B, 114, 774-780
Zhang, T., Tian, B., Kong, J., Yang, P. Liu, B. (2003). A sensitive mediator-free
tyrosinase biosensor based on an inorganic-organic hybrid titania sol-gel
matrix. Analytica Chimica Acta, 489, 199-206.

Thank you for copying data from http://www.arastirmax.com