Buradasınız

Kelkit Çayının Günlük Ekstrem Akımları için Stokastik Modelleme

Stochastic Modeling for The Daily Extreme Flows of Kelkit Stream

Journal Name:

Publication Year:

Abstract (2. Language): 
The aim of this study is to determine whether the daily extreme flows for Kelkit Stream could be forecast as a stochastic model. For this aim, the autoregressive models (the first and second order Markov models) and Arima(l.O.l) model (mixed autoregressive-moving average model) were used. The flows forecasted by using the models mentioned were compared to the observed flows. The results showed that the flow predictions based on the first order Markov model are fitted to the data better than the other models.
Abstract (Original Language): 
Bu çalışmanın amacı, Kelkit çayı günlük ekstrem akımlarının stokastik bir modelle tahmin edilebilirliğini belirlemek içindir. Bu amaçlaotoregresif modeller (birinci ve ikinci derece Markov modelleri) ve Arima(l.l) model (otoregresif-hareketli ortalama) kullanılmıştır. Adı geçen modeller kullanılarak tahmin edilen akımların gözlenen akımlar ile karşılaştırılması yapılmıştır. Sonuçlar, birinci derece Markov modelden elde edilen akım tahminlerinin, veriye diğer modellerden daha fazla uyum sağladığını göstermiştir.
119-127

REFERENCES

References: 

I- Tao, PJC. and J.W. Delleur, 1976. Seasonal and
Nonseasonal ARMA Models in Hydrology, Journal of The Hydraulics Division, HYTQ, 1541-1559.
_2-Haan, C.T. 1977. Statistics Methods in Hydrology, Iowa State Press, Iowa, 378.
3- Chow, V.T. 1964. Handbook of Applied Hydrology,
McGraw-Hill Book Company, New York.
4- Mc Michael, F.C. and IS. Hunter, 1972. Stochastic
Modeling of Temperature and Flow in Rivers, Water Resources Research, 8(1 X 87-98.
5- Anonymous, 1970. Yesilirmak Havzası Topraklari.
Topraksu Genel
Muduriug
u Yayinlari, Yayin No: 241, Ankara, 141.
6- Okman. C. 1975.
Tekrarlanm
a Analizlerinde Hidrolojik
Verilerin Seçimi, Topraksu Teknik Dergisi, 40¬41,54-58.
7-Lırtfain, J.N. 1973. Drainage Engirıeering, Robert E.
Kreiger Publishing Company, New York, 250.
8-Jinsîey,
RJC
, M.A. Kohler and JX.H Paulhus, 1958.
Hydrology for Engineering, McGraw Hill Book Company, New York, 340.
9-Box, G.E.P. and G.M. Jenkins, 1976. Time Series
Analysis Forecasting and Control, Holden-Day, San Francisco, 575. ie-Janacek, G. and L. Swift, 1993- Time Series Forecasting, Simulation, Application. Ellis Horwood, New York, 333.
II- Clark, R.T. 1988. Mathematical Models in Hydrology,
FAO, 275.
12- Matalas, N.C. 1967. Time Series Analysis, Water
Resources Research, 3, 817-829.
13- Hipel, K.W., AI. McLeod and W.C. Lennox, 1977.
Advances in Box-Jenkins Modeling 1.Model Construction, Water Resources Research, 13(3), 567-575.
14- McLeod, A.I., K.W. Hipel and W.C. Lennox, 1977.
Advances in Box-Jenkins Modeling 2.Applications, Water Resources Research, 13(3), 577-586.
Stochastic Modeling for The Daily Extreme Flows of Kelkit Stream
127
15- Bayazit, M. 1981.
Hidrolojid
e İstatistik Yöntemler,
Istanbul
Tekni
k Üniversitesi, Yayin No: 1197, İstanbul, 223.
16- Asik, S. ve A. Balci, 1995. Yillik Akimlarin Doğrusal
Markov
Modeller
i ile Stokastik Analizi: Çine Cayi Kayırli İstasyonu Yillik Akimlari Icin Bir Uygulama, Ege Üniversitesi Ziraat Fakültesi Dergisi, 32(1), 37-44.
17- McKerchar, A.I. and J.W. Delleur, 1974. Application
of Seasonal Parametric Linear Stochastic Models to Monthly Flow Data, Water Resources Research, 10(2). 246-255.
18- Carlson, R.F. 1970. Application of Linear Random
Models to Four Annual Stream flow Series, Water Resources Research, 6(4), 1070-1078.
19- Box, G.E.P. and D.A. Pierce, 1970. Distribution of
Residual Autocorrelation in Autoregressive-Integrated Moving Average Time Series Models, Journal of The American Statistical Association, 65, 1509-1526.
20- Bayazit, M. 1991. Hidroloji Uygulamaları, Istanbul
Teknik Üniversitesi,
Yayi
n No: 1455, Istanbul, 280.

Thank you for copying data from http://www.arastirmax.com