Buradasınız

Temel Bileşenler Analizi Yardımı ile Elde Edilen Daha Az Sayıda Değişken Kullanılarak Farklı Hızlarda İnsan Koşusunun Fourier Tabanlı Modelinin Oluşturulması

Developing Fourier-Based Model Using Few Variables Obtained by Principal Component Analysis in Running at Different Speeds

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Most of the recent studies focus on human walking and running movements which we often use in daily life and many athletics events. Aim of the study is to reduce dimension of kinematics data by using Principal Component Analysis method and describing human motion at different velocities by low dimensional Fourier model. In order to collect kinematics data of running movement a short distance runner (age:26, height:1.82m, kilo:76kg) was asked to run on treadmill at 8km/h, 12km/h and 16km/h running speed and 6 strides were captured. Principal Components of data including instantaneous postures which were described 3D position values of 16 anatomical markers attached on subject. It was observed that first four Principal Components can cover over 98% of original data and Running at different velocities can be effectively defined by using low-dimensional Fourier series. It was observed that the original spatial locations of the anatomical points which constitute the postures in each instant are coherent with the locations derived from the constructed running model (8km/h, R=0.97, 12km/h, R=0.94 and 16km/h, R=0.93). In this study, it has been determined that human running at varying speeds can be defined with lower dimensional data by modeling the behaviors of the first 4 components derived by using PCA method. Although components derived from PCA do not correspond to a parameter in reality, it can be seen that the second component represents the motion of the feet, the third component represents the motion of the arms and fourth component represents bouncing structure in the running process. The PCs identified in the data belonging to larger amounts of individuals and various positions, can make it possible to classify, analyze, diagnose, compare and collate between movement positions depending on different situations such as gender, running velocity, fatigue, physical structure, injury and well arrangement of technique.
Abstract (Original Language): 
Günümüzde gerçekleştirilen çalışmaların bir çoğu günlük yaşantımızda ve birçok spor branşında en sık kullandığımız yürüme ve koşu hareketleri üzerine yoğunlaşmaktadır. Bu çalışmada hareket analizi sistemlerinden elde edilen yüksek boyutlardaki kinematik veri setinin boyutlarının Temel Bileşenler Analizi (TBA) yöntemi kullanılarak indirgenmesi ve daha az sayıdaki yeni değişkenler ile farklı koşu hızları için Fourier tabanlı koşu modeli oluşturularak modelde yer alan parametrelerin koşu yapısı üzerindeki etkilerinin incelenmesi amaçlanmıştır. Farklı hızlardaki (8km/s, 12km/s ve 16km/s) koşu hareketine ait kinematik verilerin elde edilmesi amacıyla kısa mesafe koşucusu olan bir atlet (yaş:26, boy:1.82m, kilo:76kg) koşu bandında koşturularak ardışık 6 adımına ait veriler kullanılmıştır. Denek üzerinde işaretlenen 16 anatomik işarete ait 3 Boyutlu (3B) konum değerleri yardımı ile tanımlanan anlık duruşlardan oluşan veri setlerinin temel bileşenleri hesaplanmıştır. İlk dört temel biaçıklaleşenin veri setlerinin %98’inden fazlasını temsil edebildiği gözlenmiştir. Ortalama duruş olarak adlandırılan ilk bileşen ve izleyen ilk 3 bileşenin doğrusal kombinasyonu olarak ifade edilen düşük boyutlardaki Fourier tabanlı koşu modelinin, farklı hızlardaki koşu hareketinin tümü hakkında önemli bilgileri kapsadığı gözlenmiştir. Her bir andaki duruşları oluşturan anatomik noktaların gerçek uzaysal konumları ile ilk 4 bileşen kullanılarak oluşturulan koşu modelinden elde edilen konumların birbirleriyle uyumlu oldukları (8km/s için R=0.97, 12km/s için R=0.94 ve 16km/s için R=0.93) gözlenmiştir. Bu çalışmada insan koşusunun TBA yöntemi ile elde edilen ilk dört bileşenin davranışları modellenerek daha düşük boyutlarda veri setleri ile ifade edilebileceği gözlenmiştir. Her ne kadar TBA’dan elde edilen bileşenler gerçekte bir değişkene karşılık gelmesede, birinci bileşenin ortalama duruş bilgisini ikinci bileşenin ayakların salınımını, üçüncü bileşenin kolların salınımını ve dördüncü bileşenin ise koşunun sıçrama özelliğini temsil edebildikleri düşünülmektedir. Daha fazla sayıdaki birey ve cinsiyet, koşu hızı, yorgunluk, fiziksel yapı, sakatlık, tekniğin düzgünlüğü gibi farklı durumlara ait koşu verileri kullanılarak oluşturulan düşük boyutlardaki koşu modellerinin, sınıflama, analiz, teşhis, karşılaştırma ya da hareket durumları arasında harmanlama yapılabilmesine olanak sağlayacağı düşünülmektedir.

REFERENCES

References: 

1. Ariel BG. (1968). ARIEL Performance Analysis System
(APAS) [Bilgisayar yazılımı]. Ariel Dynamics, San Diego:
USA.
2. Aggarwal JK, Cai Q. (1999). Human motion analysis: a
review. Computer Vision and Image Understanding, 73,
428–440.
3. Alexander RMc. (2003). Modelling approaches in
biomechanics. Philosophical Transactions of the Royal
Society London, 358, 1429-1435.
4. Amaya K, Bruderlin A, Calvert T. (1996). Emotion from
Motion, Graphics Interface ‘96, pp. 222-229.
5. Bokman L, Syungkwon R, Park FC. (2005). 2005 IEEE
International Conference on Robotics and Automation:
Movement primitives, principal component analysis,
and the efficient generation of natural motions.
Barcelona, Spain.
6. Borzelli G, Cappizzo A, Papa E. (1999). Inter- and
intra-individual variability of ground reaction forces
sit-to-stand with principal component analysis. Medical
Engineering&Physics, 21, 235-240.
K AYNAKLAR
7. Boyle RD. (1998). Scaling additional contributions to
principal component analysis, Pattern Recognition, 31,
2047–2053.
8. Chen CY, Lee RCT. (1995). A near pattern-matching
scheme based upon principal components analysis.
Pattern Recognition, 16, 339–345.
9. Çilli M, Arıtan, S. (2005). 10th Annual Congress
European College of Sport Science: PCA application for
modeling and simulation of running patterns. Sirbistan:
Belgrade, 13–16 July.
10. Çilli M, Arıtan S. (2007). Çok boyutlu kinematik
verilerin analizinde temel bileşenler analizi yönteminin
kullanilmasi. Spor Bilimleri Dergisi , 18 (4), 156-166.
11. Collins JJ, De Luca CJ. (1993). Open-loop and closedloop
control of posture: a random-walk analysis of
center-of-pressure trajectories. Experimental Brain
Research, 95, 308–318.
12. Daffertshofer, A, Lamoth JC, Meijer OG, Beek PJ.
(2004). PCA in studying coordination and variability: a
tutorial. Clinical Biomechanics, 19, 415-428.
12 Çilli, Arıtan
13. Hatze H. (1980). A mathematical model for the
computational determination of parameter values of
anthropomorphic segments. Journal of Biomechanics,
13, (10), 833-843.
14. Hollands K, Wing A, Daffertshofer A. (2004). 3rd IEEE
EMBSS UK &RI PostGraduate Conference in Biomedical
Engineering & Medical Physics: Principal Components
Analysis of Contemporary Dance Kinematics.
Southampton: University of Southampton, 10-11 August.
15. Jason J, Kutch T, Buchanan S. (2002). Fourth World
Congress of Biomechanics. Self-organizing maps and
the representation of emg signals in terms of muscular
synergies, Calgary, Alberta, Canada, 4-9 August.
16. Karhunen J, Joutsensalo J. (1995). Generalizations of
principal component analysis, optimization problems,
and neural networks. Neural Networks, 8, 549–562.
17. Kudoh S. (2004). Balance maintenance for human-like
models with whole body motion. ( Doctral Thesis, 2005).
The Department of Computer Science the Graduate
School of Information Science and Technology the
University of Tokyo.
18. Manly BFJ. (1992). Multivariate Statistical Methods A
Premier. London: Chapman & Hall.
19. MATLAB [ Bilgisayar Yazılımı], Mathworks Inc., Natick:
Ma, USA.
20. Murase H, Nayar SK. (1993). In: Fall Symposium:
Machine Learning In Computer Vision: Learning and
recognition of 3-D objects from brightness images.
Raleigh, North Carolina, Fall, 22-24 October.
21. Nayar SK, Poggio T. (1996). Early visual learning.
Oxford University Press, New York.
22. Ormoneit D, Black MJ, Hastie T, Kjellstro¨m H. (2005).
Representing cyclic human motion using functional
analysis. Image and Vision Computing, 23, 1264–1276.
23. Pinkowski B. (1997). Principal component analysis of
speech spectrogram images. Pattern Recognition, 30,
777–787.
24. Ramsay JO, Munhall KG, Gracco VL, Ostry DJ. (1996).
Functional data analyses of lip motion. Journal of the
Acoustical Society of America, 99(6), 3718-27.
25. Rash G, Campbell K. (2002). Fundamentals of
equipment and methodology, Retrieved June 10, 2003,
from http://www.gcmas.org/basic_documents.html
26. Rodtook S, Rangsanseri Y. (2001). International
Conference of information technology coding and
computing: Adaptive thresholding of document images
based on Laplacian sign.Las Vegas: Nevada, 2-4 April.
27. Rosales R, Scarloff S. (2000). IEEE Computer Society
Workshop on Human Motion: Specialized mappings and
the estimation of human body pose from a single image.
Austin, TX, 19-24.
28. Sanger TD. (2000). Human Arm Movements Described
by a Low-Dimensional Superposition of Principal
Components. The Journal of Neuroscience, 20(3), 1066–
1072.
29. Sanjeev D, Nandedkar D, Sanders B. (1989.). Principal
component analysis of the features of concentric needle
EMG motor unit action potentials. Muscle & Nerve, John
Wiley & Sons, Inc., 12(4), 288 – 293.
30. Santello M, Flanders M, Soechting JF. (1998).
Postural Hand Synergies for Tool Use. The Journal of
Neuroscience, 18(23), 10105–10115.
31. Troje FN. (2002a). Decomposing biological motion: A
frame work for analysis and synthesis of human gait
pattern. Journal of Vision, 2, 371-387.
32. Troje FN. (2002b). The little difference: Fourier based
synthesis of genderspecific biological motion, In: Rolf P.
Würtz, Markus Lappe (Eds.),Dynamic Perception, Berlin:
AKA Press, 2002, pp 115-120.
33. Unuma M, Anjyo K, Takeuchi R. (1995). Fourier
Principles for Emotion-based human Figure Animation.
Hitachi Research Laboratory, Hitachi Ltd. ACM.
34. Winter DA, Sidwall HG, Hobson DA. (1974),
Measurement and reduction of noise in kinematics of
locomotion. Journal of Biomechanics, 7, 157-159.
35. Yamamoto S, Suto Y, Kawamura H, Hashizume
T, Kakurai S, Sugahara S. (1983). Quantitative gait
evaluation of hip diseases using principal component
analysis. Journal of Biomechanics, 16, (9), 717–726.
36. Yamato J, Ohya J, Ishii K. (1992). Recognizing human
action in time sequential images using Hidden Markov
Model, in Proc. IEEE Conf. CVPR, Champaign, IL, pp.
379–385.
37. Yeadon MR. (1990). The simulation of aerial movement-
II. A mathematical inertia model of the human body.
Journal of Biomechanics, 23, 67-74.
38. Zhang Z, Troje FN. (2004). 3D periodic human motion
reconstruction from 2D motion sequences, Proceedings
of the 2004 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops
(CVPRW’04), 1063-6919/04 IEEE.
39. Zhang H, Zhang LO. (2005). ECG analysis based on PCA
and Support Vector Machines. International Conference
on Neural Networks and Brain ICNN&B ‘05, 2, 743- 747.

Thank you for copying data from http://www.arastirmax.com