Buradasınız

HAVA FOTOĞRAFI VE OPTİK UYDU GÖRÜNTÜLERİ YARDIMIYLA YATAY YER DEĞİŞTİRMELERİN BELİRLENMESİ

DETERMINING HORIZONTAL DISPLACEMENTS BY AERIAL PHOTOS AND OPTICAL SATELLITE IMAGES

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
GPS and satellite images are used for determining displacements resulting from natural disasters such as earthquake and landslide. Satellite images, which are fast, effective and economic tools for revealing surface deformations and mass movements in such regions have commonly been used. A method was developed for determining horizontal displacements and mass movements resulting from large earthquakes, glacier flow, landslides, and sand dune migrations. This method, which is named as Co- Registration of Optically Sensed Images and Correlation (COSI-Corr), makes it possible to measure horizontal ground deformation from optical images in earthquake, glacier, landslide, and sand dune regions. In particular, its sub-pixel capabilities allow for accurate mapping of surface ruptures and measurement of co-seismic offsets. Although it has been commonly applied to earthquake, sand dune and glacier regions today, it has not been used sufficiently in landslide regions. Landslides, which have frequently been encountered in the world, cause loss of live and asset. It is highly important to reveal displacements and mass movements resulting from landslides. This study focuses on studies performed for landslide by COSI-Corr method and obtained results in the study area selected on the North Anatolian Fault Zone.
Abstract (Original Language): 
Deprem ve heyelan gibi doğal afetler sonucunda meydana gelen yer değiştirmelerin belirlenmesinde GPS ve uydu görüntülerinden faydalanılmaktadır. Bu tür alanlarda yüzey deformasyonlarının ve kütle hareketlerinin belirlenmesinde hızlı, etkin ve ekonomik olan uydu görüntüleri yaygın olarak kullanılmaktadır. Deprem ve heyelandan kaynaklanan yatay yer değiştirme ve kütle hareketlerinin belirlenebilmesi amacıyla California Teknoloji Enstitüsü tarafından bir yöntem geliştirilmiştir. Co-Registration of Optically Sensed Images and Correlation (COSI-Corr) olarak isimlendirilen bu yöntem, optik görüntülerden başta deprem olmak üzere heyelan ve buzul bölgelerinde meydana gelen yatay yöndeki yer değiştirmelerin ölçülebilmesine olanak tanımaktadır. Özellikle, yazılımın piksel altı işlem yapma yeteneği sayesinde yüzey yırtılmalarının 1/20 piksel civarında doğru olarak haritalanması ve kosismik sapmaların hassas bir şekilde ölçülmesi mümkün olabilmektedir. Bu yöntemin, günümüzde deprem ve buzul bölgelerinde yaygın bir şekilde kullanıldığı görülmekte ancak heyelan bölgelerinde kullanımına yeterince rastlanmamaktadır. Dünya’da ve ülkemizde sık olarak meydana gelen, can ve mal kaybına neden olan heyelanlara ait yer değiştirmelerin belirlenmesi ve kütle hareketlerinin ortaya konulması önem taşımaktadır. Bu çalışmada, COSICorr yöntemi kullanılarak Kuzey Anadolu Fay Zonu (KAFZ) üzerinde seçilen pilot alanda heyelana yönelik gerçekleştirilen çalışmalardan ve elde edilen sonuçlardan bahsedilmektedir.
71
79

REFERENCES

References: 

[1] Corsini, A., Pasuto, A., Soldati, M. and
Zannoni, A. (2005) “Field Monitoring of the Corvara
Landslide Gökçeoğlu vd. 27 (Dolomites, Italy) and its
Relevance for Hazard Assessment”, Geomorphology,
Vol. 66, pp. 149-165.
[2] Dercourt, J., (2000) “Apport du GPS au Suivi
en Continu des Mouvements de Terrrain:Application
au Glissement-Coulee de Super-Sauze (Alpes-de-
Haute-Provence,France)” Earth and Planetary
Sciences, Vol. 331, pp. 175-182.
[3] Gili, JA, Corominas, J and Rius, J (2000)
“Using Global Positioning System Techniques in
Landslide Monitoring” Engineering Geology, Vol. 55,
pp. 167-192.
[4] Malet, JP, Maquaire, O and Calais, E (2002)
“The Use of Global Positioning System Techniques
for The Continuous Monitoring of Landslides:
Application to the Super-Sauze Earthflow (Alpes-de-
Haute-Provence, France)” Geomorphology, Vol.43,
pp. 33-54.
[5] Squarzoni, C., Delacourt, C., Allemand, P.,
(2005) “Differential Single-Frequency GPS
Monitoring of the La Valette landslide (French Alps)”
Engineering Geology, Vol. 79, pp. 215–229.
[6] Burgmann, R, Hilley, G, Ferretti, A and
Novali, F (2006) “Resolving Vertical Tectonics in the
San Francisco Bay area from Permanent Scatterer
InSAR and GPS Analysis” Geological Society of
America, Vol. 34, No.3, 221-224.
[7] Colesanti, C., Ferretti, A., Prati, C. and Rocca,
F., (2001) “Seismic Faults Analysis in California by
Means of the Permanent Scatterers Technique, Third
International Symposium on Retrieval of Bio- and
Geophysical Parameters from SAR Data for Land
Applications, 11-14 September, in Sheffield, UK., 125
– 131.
[8] Wasowski, J and Gostelow, P (1999)
“Engineering Geology Landslide Investigations and
SAR Interferometry” Proceedings of FRINGE ’99,
Liège, Belgium.
[9] Hooper, A., Zebker, H., Segall, P., and
Kampes, B., (2004) “A New Method for Measuring
Deformation on Volcanoes and Other Natural Terrains
Using InSAR Persistent Scatterers” Geophsical
Research Letters, Vol. 31, L23611.
[10] Gao, L. and Zeng, Q., (2007) “Terrain
Deformation Monitoring in Three Gorges Area Using
Permanent Scatterers SAR Interferometry”
ScanGIS’2007 - Proceedings of the 11th
Geographical Information Sciences, 5th-7th
September 2007.
[11] Meisina, C., Zucca, F., Fosatti, D., Ceriani, M.,
and Allievi, J., (2006) “Ground Deformation
Monitoring by Using the Permanent Scatterers
Technique: The Example of the Oltrepo Pavese
(Lombardia, Italy)” Engineering Geology, Vol.
88(2006), pp. 240–25.
[12] Jung, H.C. and Min, K.D., (2005) “Observing
Coal Mining Subsidence from JERS-1 Permanent
Scatterer Analysis” Geoscience and Remote Sensing
Symposium, IGARSS, Proceedings, 25-29 July 2005
pp:4578- 4581.
[13] Kim, JS, Kim, DJ., Kim, SW, Won, JS and
Moon, WM (2007) “Monitoring of Urban Land
Surface Subsidence Using PSInSAR” Geosciences
Journal, Vol. 11, No.1, pp. 59–73.
[14] Leprince, S., Barbot, S., Ayoub, F. and
Avouac, J.P. (2007) “Automatic and Precise
Orthorectification, Coregistration and Subpixel
Correlation of Satellite Images, Application to Ground
Deformation Measurements” IEEE Trans. Geosci.
Remote Sensing, Vol.45, No.6, pp. 1529–1558.
[15] Wei, S., Eric, F., Leprince, F., Sladen, A.,
Avouac, J.P., Helmberger, D., Hauksson, E., Chu, R.,
Simons, M., Hudnut, K., Herring, T. and Briggs, R.,
(2011) “Superficial Simplicity of the 2010 El Mayor-
Cucapah Earthquake of Baja California in Mexico”
Nature Geoscience, Vol. 4, pp. 615–618.
Hava Fotoğrafı ve Optik Uydu Görüntüleri Yardımıyla Yatay Yer Değiştirmelerin Belirlenmesi
TÜRK
79
[16] Leprince, S., Berthier, E., Ayoub, F.,
Delacourt, C. and Avouac, J.P., (2008) “Monitoring
Earth Surface Dynamics with Optical Imagery” EOS,
Trans. Amer. Geophys. Union, Vol. 89, No.1, pp.1-12.
[17] Ayoub, F., Leprince, S. and Avouac, J.P.,
(2009) “Co-Registration And Correlation Of Aerial
Photographs For Ground Deformation Measurements”
ISPRS Journal of Photogrammetry and Remote
Sensing, Vol. 64, pp. 551-560.
[18] Herman, F, Anderson, B, Leprınce, S (2011)
“Mountain Glacier Velocity Variation During a
Retreat/Advance Cycle Quantified Using Sub-Pixel
Analysis of ASTER images” Journal of Glaciology,
Vol. 57, No. 202, pp. 197-207.
[19] Avouac, JP, Ayoub, F, Leprince, S, Konca, O
and Helmberger, DV (2006) “The 2005, Mw 7.6
Kashmir Earthquake: Sub-Pixel Correlation of
ASTER Images and Seismic Waveforms Analysis”
Earth and Planetary Science Letters, Vol. 249, pp.
514–528.
[20] Taylor, M., Leprince, S., Avouac, J.P. and
Sieh, K., (2008) “Detecting Coseismic Displacements
in Glaciated Regions: an Example from the Great
November 2002 Denali Earthquake Using Spot
Horizontal Offsets” Earth and Planetary Science
Letters, Vol. 270, pp. 209–220.
[21] Necsoiu, M, Leprince, S, Hooper, MD,
Dinwiddie, CL, McGinnis, NR and Walter, GR.
(2009) “Monitoring Migration Rates of an Active
Subarctic Dune Field Using Optical İmagery” Remote
Sensing of Environment, Vol. 113, pp. 2441–2447.
[22] Scherler, D, Leprince, S and Strecker, MR
(2008) “Glacier-surface Velocities in Alpine Terrain
From Optical Satellite Imagery-Accuracy
İmprovement and Quality Assessment” Remote
Sensing of Environment, Vol. 112, pp. 3806–3819.
[23] Konca, O, Leprince, S, Avouac, JP and
Helmberger, DV (2010) “Rupture Process of the 1999
Mw 7.1 Duzce Earthquake from Joint Analysis of
SPOT, GPS, InSAR, Strong-Motion, and Teleseismic
Data: A Supershear Rupture with Variable Rupture
Velocity” Bulletin of the Seismological Society of
America, Vol. 100(1), pp. 267–288.
[24] Hermas, E., Leprince, S. and El-Magd, I.A.,
(2012) “Retrieving Sand Dune Movements Using
Sub-Pixel Correlation Of Multi-Temporal Optical
Remote Sensing Imagery, Northwest Sinai Peninsula,
Egypt” Remote Sensing of Environment, Vol. 121,
51-60.
[25] Gökçe, O., Özden, Ş., Demir, A., (2008)
“Türkiye’de Afetlerin Mekansal ve İstatistiksel
Dağılımı Afet Bilgileri Envanteri” T.C Bayıındırlık Ve
İskan Bakanlığı Afet İşleri Genel Müdürlüğü, Afet
Etüt ve Hasar Tespit Daire Başkanlığı, Ankara.
[26] Sendir, H. and Yılmaz, I., (2002) “Structural,
Geomorphological And Geomechanical Aspects of the
Koyulhisar Landslides in the North Anatolian Fault
Zone (Sivas, Turkey)” Env Geol, Vol. 42, pp. 52–60.
[27] Gökçeoğlu, C., Sönmez, H., Nefeslioğlu, A.H.,
Duman, T.Y. and Can, T., (2005) “The 17 March
2005 Kuzulu landslide (Sivas, Turkey) and landslidesusceptibility
map of its near vicinity” Engineering
Geology, Vol. 81, pp. 65-83.
[28] Hastaoğlu, K.Ö., (2009) “GPS Hızlı Statik
Yöntem ile Heyelanların İzlenebilirliğinin
Araştırılması: Sivas Koyulhisar Örneği” Doktora Tezi,
Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü,
İstanbul.

Thank you for copying data from http://www.arastirmax.com