Buradasınız

Control of a hydraulic system by means of a fuzzy approach

Journal Name:

Publication Year:

DOI: 
10.11121/ijocta.01.2013.00153

AMS Codes:

Abstract (Original Language): 
Non linear models can be represented conveniently by Takagi-Sugeno fuzzy models when nonlinearities are bounded. This approach uses a collection of linear models which are interpolated by non linear functions. Then the global control law is the interpolation by the same functions of each feedback associated to each linear model. A Lyapunov approach enables to compute these feedback gains. The number of linear models depends directly on the number of nonlinearities the system has. The more models there are, the more difficult it is to guarantee the stability of the closed loop. This paper proposes a method to reduce the number of linear models by assuming a number of nonlinearities considered as uncertainties and to guarantee the global exponential stability of the system. This method is applied on a hydraulic system.
121
131

REFERENCES

References: 

[1] T. Takagi and M. Sugeno, “Fuzzy
identification of systems and its applications
to modeling and control,” IEEE Transactions
on Systems Man and Cybernetics, 15 (1),
116-132 (1985).
[2] J. Lauber, “Moteur à allumage commandé
avec EGR : modélisation et commande non
linéaires,” Ph.D, Université de Valenciennes
et du Hainaut-Cambrésis, France, décembre
(In French) (2003).
[3] S. Boyd, L. El Ghaoui, E. Feron and V.
Balakrishnan, “Linear Matrix Inequalities in
system and control theory,” Studies in
Applied Mathematics. SIAM, 1069-1087,
Philadelphia PA, June (1994).
[4] J. Yoneyama, M. Nishikawa, H. Katayama
and A. Ichikawa, “Output stabilization of
Takagi-Sugeno fuzzy fuzzy systems,” Fuzzy
sets and system, 111, 253-266 (2000).
[5] M. Ksontini, F. Delmotte, T-M. Guerra and
A. Kamoun, “Disturbance Rejection Using
Takagi Sugeno Fuzzy Model Applied to an
interconnected tank system,” SMC'03,
Washington, DC, USA, 3352-3357 (2003).
[6] Y. Morère, ” Mise en œuvre d'une loi de
commande pour les modèles flous de type
Takagi Sugeno,” Ph.D, LAMIH, Université
de Valenciennes, (in French) (2001).
[7] T. Taniguchi, K. Tanaka, H. Ohtake & H.O.
Wang, “Model construction, rule reduction,
and robust compensation for generalized
form of Takagi-Sugeno fuzzy systems,”
IEEE Trans. on Fuzzy Systems, 9 (4), 525-
537 (2001).
[8] D. Peaucelle, D. Arzelier, O. Bachelier and
J. Bernussou, “A new robust stability
condition for real convex polytopic
uncertainty, ” Systems and Control letters,
40 (1), 21-30 (2000).
[9] K. Tanaka, T. Ikeda and H.O. Wang, “Fuzzy
regulators and fuzzy observers: relaxed
stability conditions and LMI-based
designs,”IEEE Transactions on Fuzzy
Systems, 6 (2), 1-16 (1998).
[10] A. Sala and C. Ariñob, “Asymptotically
necessary and sufficient conditions for
stability and performance in fuzzy control:
Applications of Polya’s theorem,” Fuzzy
sets and system, 158, 2671-2686 (2007).
[11] J. T. Pan, T. M. Guerra, S.M. Fei, A. Jaadari,
Non Quadratic Stabilization of Continuous
TS Fuzzy Models : LMI Solution for a Local
Approach, IEEE transaction on Fuzzy
systems, 1063-6706 (2011).
[12] F. Delmotte, T.M. Guerra, M. Ksontini
“Continuous Takagi-Sugeno’s Models:
Reduction of the Number of LMI conditions
in various fuzzy control design techniques”,
IEEE Trans. on Fuzzy Systems, 15 (3), 426-
438 (2007).
[13] X. Liu. and Z. Zhao Qingling, “New approaches to
H
controller designs based
on fuzzy observers for TS fuzzy systems via
LMIS”, Fuzzy sets and system, Automatica
(2003).
[14] T.M. Guerra and W. Perruquetti, “Non
quadratic stabilisation of discrete Takagi
Sugeno fuzzy models,” Fuzzy IEEE 2001,
Australie, Melbourne, December (2001).
[15] Kim and Lee, “New Approaches to Relaxed
Quadratic Stability Condition of Fuzzy
Systems,” IEEE Sugeno Transactions on
Fuzzy Systems, 8 (5), 523-533 (2003).
[16] X.J. Ma, Z.Q. Sun and Y.Y. He, “Analysis
and design of fuzzy controller and fuzzy
observer,”IEEE transactions Fuzzy Systems,
6 (1), 41-50 (1998).
[17] V. F. Montagner, R. C. L. F. Oliveira, P. L.
D. Peres: Convergent LMI Relaxations for
Quadratic Stabilizability and Hin Control of
Takagi-Sugeno Fuzzy Systems, IEEE T.
Fuzzy Systems, 17 (4), 863-873, (2009).
[18] S. Cao, N. Rees and G. Feng, “Stability
analysis and design for a class of
continuous-time fuzzy control systems,”
International Journal of Control, 64 (6),
1069-1087 (1996).

Thank you for copying data from http://www.arastirmax.com