Journal Name:
- Journal of Control Engineering and Technology
Publication Year:
- 2013
Author Name |
---|
- 2
- English
REFERENCES
[1] H. Fujisaka, T. Yamada, “Stability theory of synchronized
motion in coupled-oscillator systems”, Progress of
Theoretical Physics, vol. 69, no. 1, pp. 32-47, 1983.
[2] L.M. Pecora, T.L. Carroll, “Synchronization in chaotic
systems,” Phys. Rev. Lett., vol. 64, pp. 821-824, 1990.
[3] L.M. Pecora, T.L. Carroll, “Synchronizing chaotic circuits,”
IEEE Trans. Circ. Sys., vol. 38, pp. 453-456, 1991.
[4] K.T. Alligood, T. Sauer and J.A. Yorke, Chaos: An
Introduction to Dynamical Systems, Berlin, Germany:
Springer-Verlag, 1997.
[5] Edward Ott, Chaos in Dynamical Systems, Cambridge, United
Kingdom, Cambridge University Press, 2002.
[6] Wang, Y.M. and Zhu, H. (2006) „Generalized synchronization
of continuous chaotic systems‟, Chaos, Solitons and Fractals,
Vol. 27, 97–101.
[7] Z.M. Ge, C.C. Chen, (2004) „Phase synchronization of
coupled chaotic multiple time scales systems‟, Chaos,
Solitons and Fractals, Vol. 20, pp. 639–647.
[8] J. Qiang, (2007) „Projective synchronization of a new hyper
chaotic Lorenz systems‟, Phys. Lett. A, Vol. 370, pp. 40–45.
[9] Y. Jian-Ping, L. Chang-Pin, (2006) „Generalized projective
synchronization for the chaotic Lorenz systems and the
chaotic Chen system‟, Journal of Shanghai University, Vol.
10, pp. 299–304.
[10] R.H. Li, W. Xu and S. Li (2007) „Adaptive generalized
projective synchronization in different chaotic systems based
on parameter identifiction‟, Phys. Lett. A, Vol. 367, pp. 199–
206.
[11] V. Sundarapandian, P. Sarasu (2012) „Generalized projective
synchronization of double-scroll chaotic systems using active
feedback control‟, CCSIT 2012, Part-I, LNICST Vol. 84,
Springer Heldelberg, Dordrecht, London, Newyork, pp. 111–
118.
[12] P. Sarasu, V. Sundarapandian (2012) „Generalized projective
synchronization of three-scroll chaotic systems via. active
control‟, CCSIT 2012, Part-I, LNICST Vol. 84, Springer
Heldelberg, Dordrecht, London, Newyork, pp. 124–133.
[13] R.H. Li, (2008) „A speial full-state hybrid projective
synchronization in symmetical chaotic systems‟, Applied
Math. Comput, Vol. 200, pp. 321–329.
[14] V. Sundarapandian, R. Suresh, (2012) „Hybrid
synchronization of Arneodo and R¨ossler chaotic systems by
active nonlinear control‟, CCSIT 2012, Part-I, LNICST Vol.
84, Springer Heldelberg, Dordrecht, London, Newyork, pp.
257–266.
[15] V. Sundarapandian, S. Sivaperumal, (2012) „Hybrid
synchronization of hyper chaotic Chen system via sliding
mode control‟, CCSIT 2012, Part-I, LNICST Vol. 84,
Springer Heldelberg, Dordrecht, London, Newyork, pp. 73–82.
Journal of Control Engineering and Technology (JCET)
JCET Vol. 3 Iss. 2 April 2013 PP. 69-75 www.ijcet.org ○C American V-King Scientific Publishing
75
[16] K. Murali, M. Lakshmanan, (2003) „Secure communication using a compound signal using sampled-data feedback‟, Applied Mathematics and Mechanics, Vol. 11, pp.1309–1315.
[17] T. Yang, L.O. Chua, (1999) „Generalized synchronization of chaos via linear transformations‟, Internat. J. Bifur. Chaos, Vol. 9, pp. 215–219.
[18] K. Murali, M. Lakshmanan, (1996) Chaos in Nonlinear Oscillators: Controlling and Synchronization, Singapore: World Scientific.
[19] S.K. Han, C. Kerrer and Y. Kuramoto, (1995) „D-phasing and bursting in coupled neural oscillators‟, Phys. Rev. Lett., Vol. 75, pp. 3190–3193.
[20] B. Blasius, A. Huppert and L. Stone, (1999) „Complex dynamics and phase synchronization in spatially extended ecological system‟, Nature, Vol. 399, pp.354–359.
[21] L. Kocarev, U. Parlitz, (1995) „General approach for chaotic synchronization with applications to communications,‟ Phys. Rev. Lett., Vol. 74, 5028–5030.
[22] Zuolei Wang, (article in press), „Chaos synchronization of an energy resource system based on linear control,‟ Nonlinear Analysis: Real world Application.
[23] Jiang Wang, Lisong Chen, Bin Deng, (2009), „Synchronization of ghost burster neurons in external electrical stimulation via H1 variable universe fuzzy adaptive control,‟ Chaos, Solitons and Fractals, Vol. 39, 2076–2085.
[24] F.M. Moukam Kakmeni, J.P. Nguenang and T.C. Kofane (2006), „Chaos synchronization in bi-axial magnets modeled by bloch equation,‟ Chaos, Solitons and Fractals, Vol. 30, 690–699.
[25] J.L. Hindmarsh, R.M. Rose (1984), „A model of neuronal bursting using 3-coupled 1st order differential equations,‟ Proc. Roy. Soc. Lond. B. Biol, Vol. 221, 81–102.
[26] Yan-Qiu Che, Jiang Wang, Kai-Ming Tsang and Wai-Lok Chen, (2010), „Unidirectional synchronization for Hindmarsh-Rose neurons via robust adaptive sliding mode control,‟ Nonlinear Analysis: Real world Application, Vol. 11, 1096–1104.
[27] Guang Zhao Zeng, Lan Sun Chen and Li Hua Sun, (2005), „Complexity of an SIR epidemic dynamics model with impulsive vaccination control,‟ Chaos, Solitons and Fractals, Vol. 26, 495–505.
[28] Junxa Wang, Dianchen Lu and Lixin Tian (2006), „Global synchronization for time delay WINDMI system,‟ Chaos, Solitons and Fractals, Vol. 30, 629–635.
[29] E. Ott, C. Grebogi and J.A. Yorke (1990), „Controlling chaos,‟ Phys. Rev. Lett., Vol. 64, 1196–1199.
[30] K. Murali, M. Lakshmanan, (2003), „Secure communication using a compound signal using sampled-data feedback,‟ Applied Mathematics and Mechanics, Vol. 11, 1309–1315.
[31] J.H. Park, O.M. Kwon, (2003), „A novel criterion for delayed feedback control of time-delay chaotic systems,‟ Chaos, Solitons and Fractals, Vol. 17, 709–716.
[32] J. Lu, X. Wu, X. Han and J. Lu (2004), „Adaptive feedback synchronization of a unified chaotic system,‟ Phys. Lett. A, Vol. 329, 327–333.
[33] J.H. Park., S.M. Lee and O.M. Kwon (2007), „Adaptive synchronization of Genesio-Tesi chaotic system via a novel feedback control,‟ Physics Letters A., Vol. 371, 263-270.
[34] J.H. Park. (2008), „Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters,‟ J. Computational and Applied Math., Vol. 213, 288–293.
[35] H.T. Yau (2004), „Design of adaptive sliding mode controller for chaos synchronization with uncertainties,‟ Chaos, Solitons and Fractals, Vol. 22, 341–347.
[36] V. Sundarapandian (2011), „Global chaos synchronization of the Pehlivan systems by sliding mode control,‟ International J. Computer Science and Engineering, Vol. 03, 2163-2169.
[37] V. Sundarapandian, S. Sivaperumal (2012), „Sliding mode controller design for global chaos synchronization of Coullet chaotic systems,‟ International Journal of Information Science and Techniques, Vol. 2, 65-76.
[38] V. Sundarapandian, R. Suresh (2010), „Global chaos synchronization for Rossler and Arneodo chaotic systems by nonlinear control‟, Far East Journal of Applied Mathematics, Vol. 44, 137-148.
[39] V. Sundarapandian, R. Suresh, (2010) „New results on the global chaos synchronization for Liu-Chen-Liu and Lu chaotic systems‟, PEIE 2010, CCIS Vol. 102, Springer-Verlag Berlin Heidelberg, pp. 20–27.
[40] X. Wu, J. Lu (2003), „Parameter identification and backstepping control of uncertain Lu system,‟ Chaos, Solitons and Fractals, Vol. 18, 721–729.
[41] Y.G. Yu, S.C. Zhang (2006), „Adaptive backstepping synchronization of uncertain chaotic systems,‟ Chaos, Solitons and Fractals, Vol. 27, 1369–1375.
[42] J.C. Sprott, “Chaos and time series analysis”, Oxford University Press, Newyork, USA, 2003.
[43] P. Coullet, C. Tresser and A. Arneodo, “Transition to stochasticity for a class of forced oscillators”, Phys. Lett. A. vol. 72, pp. 268-270, 1979.
[44] W. Hahn, “The stability of Motion”, Berlin, Germany: Springer- Verlag, 1967.