[1] M. L. Rosenzweig, R. H. MacArthur, “Graphical representation and stability conditions of predator-prey interactions”, American Naturalist, 47, 1963, pp. 209-223.
[2] D. Alstad, “Basic Populas Models of Ecology”, Prentice Hall, Inc., NJ, 2001.
[3] J. Manatunge, T. Asaeda, and T. Priyadarshana, “The influence of structural complexity on fish-zooplankton interactions: a study using artificial submerged macrophytes”, Environmental Biology of Fishes, 58, 2000, pp. 425-438.
[4] J.H. Grabowski, Habitat complexity disrupts predator-prey interactions but not the trophic cascade on oyster reefs, Ecology, 85(4), 2004, pp. 995-1004.
[5] J.F. Savino, R. A. Stein, “Predator-prey interaction between largemouth bass and bluegills as influenced by simulated, submersed Vegetation”, Trans American Fisheries Society, 111, 1982, pp. 255-266.
[6] C.S. Holling, “Some characteristics of simple types of predation and parasitism”, Canadian Entomologist, 91, 1959, pp. 385-398.
[7] N. Bairagi, D. Jana, “On the stability of Hopf-bifurcation of predator-prey system with habitat complexity”. Applied Math. Modeling 35, 2011, pp. 3255-3267.
[8] E. Renshaw, “Modelling biological populations in space and time”, Cambridge University Press, Cambridge, 1995.
[9] R.Z. Khasminskii, F.C. Klebaner, “Long term behavior of solutions of the Lotka-Volterra systems under small random perturbations”, Ann. Appl. Probab., 11, 2001, pp. 952-963.
[10] X. Mao, S. Sabanis, E. Renshaw, “Asymptotic behaviour of stochastic Lotka-Volterra model”, J. Math. Anal. Appl., 287, 2003, pp. 141-156.
[11] T.K. Soboleva, A.B. Pleasants, “Population growth as a nonlinear stochastic process”, Math. Comput. Model, 38, 2003, pp. 1437-1442.
[12] R. Sarkar, J. Chattopadhayay and N. Bairagi, “Effects of Environmental Fluctuation on an Eco-epidemiological Model of Salton Sea”. Environmetrics, 12, 2001, pp. 289-300.
[13] P. Samanta, A. Maiti, “Stochastic Gomatam model of interacting species: non-equilibrium fluuctuation and stability”. Syst. Anal. Mod. Simul., 43, 2003, pp. 683-692.
[14] V.F. Pugachev, “On an optimisation criterion for an economy (Russian). Veinstein A. L., ed.: National Economic Models. Theoretical Problems of Consumption.”, Moscow, 1963.
[15] G.E. Uhlenbeck, L.S. Ornstein, “Stochastic Process”, New York: Dover, 1954.
[16] P.G. Hoel, S.C. Port and C.J. Stone, “Introduction to Stochastic Process”, Houghton Miffin Company, Boston, U. S. A, 1993.
[17] R.M. May, “Stability and Complexity in Model Ecosystems”. Princeton University Press, Princeton, NJ, 1973.
[18] L.S. Luckinbill, “Coexistence in Laboratory Populations of Paramecium aurelia and its predator Didinium nasutum”. Ecology 54, 1973, pp. 1320-1327.
[19] G.W. Salt, “Predator and prey densities as controls of the rate of capture by the predator Didinium nasutum”. Ecology 55, 1974, pp. 434-439.
[20] E. Reukauf, “Zur biologie von Didinium nasutum”. Zeitschrift fur vergleichende Physiologie 11, 1930, pp. 689-701.
[21] H.M. Butzel, A.B. Bolten, “The relationship of the nutritive state of the prey organism Paramecium aurelia to the growth and encystment of Didinium nasutum”. J. Protozool 15, 1968, pp. 256-258.
[22] G.W. Harrison, “Comparing predator-prey models to Luckinbill‟s experiment with Didinium and Paramecium”. Ecology 76(2), 1995, pp. 357-374.
[23] C. Jost, S. P. Ellner, “Testing for predator dependence in predator-prey dynamics: a non-parametric approach”. Proc. R. Soc. Lond. B. 267, 2000, pp. 1611-1620.
Thank you for copying data from http://www.arastirmax.com